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LI B R A R y 

Turbulence Measurements in an 
Axisymmetric Separated and 
Reattached Flow Over a 
Longitudinal Blunt Circular 
Cylinder 
Turbulence measurements were made in the separated, reattached, and redeveloped re
gions of an axisymmetric incompressible airflow over a longitudinal circular cylinder with 
blunt leading edge. Three components of turbulent fluctuating velocity and the turbulent 
shear stress are presented. In the boundary layer downstream of the reattachment point, 
Prandtl's mixing length and turbulent kinetic energy length scale are estimated, and the 
correlation between the turbulent shear stress and the turbulent kinetic energy is de
scribed. 

Introduction 
The separation and reattachment of flow occurs in various engi

neering aspects and there have been many works on a wide variety 
of flow configurations, which were referred to papers by the present 
authors [1-3]. In addition, several papers have recently been published 
[4-10]. However there is still little published work on the incom
pressible separated and reattached flow past bodies of revolution. 

In this standpoint, one of the present authors has reported an ex
perimental study for the separated, reattached, and redeveloped re
gions of an axisymmetric flow over a longitudinal blunt circular cyl
inder [1], in which the boundary layer at the separation point can be 
considered to be very thin and its effects on the separation and reat
tachment to be small. The testing fluid was air and the speed was so 
slow as to regard the flow as an incompressible one. The flow pattern 
in the separated and reattached regions was measured and the 
boundary-layer characteristics of the flow downstream of reattach
ment have been discussed. The turbulence characteristics except the 
streamwise component of turbulent fluctuating velocity, however, 
were not measured. 

Contributed by the Applied Mechanics Division for publication in the 
JOURNAL op APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
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10017, and will be accepted until June 1,1980. Readers who need more time to 
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The authors studied the turbulence characteristics in the separated,, 
reattached, and redeveloped regions of a two-dimensional incom
pressible airflow over a flat plate of finite thickness having blunt 
leading edge [3]. In the redeveloped flow region downstream of reat
tachment, Prandtl's mixing length and turbulent kinetic energy length 
scale were described, and the correlation between the turbulent shear 
stress and the turbulent kinetic energy was discussed. Unfortunately 
the longitudinal distance examined was relatively short so as to clarify 
the development of the turbulence characteristics in the downstream 
direction, and the spanwise component of turbulent fluctuating ve
locity was not measured. Furthermore the previous studies noted 
before on the turbulence characteristics in the separated and reat
tached flow are mainly concerned with the two-dimensional flow and 
the internal flow in pipes or ducts. 

The purpose of the present study was to investigate the turbulence 
characteristics such as three components of turbulent fluctuating 
velocity and the turbulent shear stress in the separated, reattached, 
and redeveloped regions of an axisymmetric incompressible airflow 
over a longitudinal circular cylinder with blunt leading edge. In the 
redevelopment region of the boundary layer downstream of reat
tachment, Prandtl's mixing length and turbulent kinetic energy length 
scale are estimated and the correlation between the turbulent shear 
stress and the turbulent kinetic energy is presented. In addition the 
present results for an axisymmetric flow are compared with the pre
vious data for a two-dimensional flow over a blunt flat plate and for 
other flow configurations. The flow configuration treated in the 
present study is schematically shown in Fig. 1 where t/o, d, and £ are 
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Fig. 1 Flow configuration and coordinate system 

the velocity of upstream uniform flow, the cylinder diameter, and the 
distance from the leading edge to the reattachment point, respectively. 
The flow separates at the leading edge of the cylinder over the whole 
circumference and then reattaches onto the cylinder surface and 
subsequently develops to the downstream. The coordinate system 
employed is also included in Fig. 1. 

Experimental Apparatus and Technique 
The experiments were carried out in a low speed free-jet-type open 

wind tunnel which is the same as that used in the previous study [1] 
and accordingly its detail is neglected in this paper. The circular 
cylinder having smooth surface tested is 38 mm in diameter and 580 
mm long, and its leading edge is sharply cut at an angle of 90 deg in 
order that the flow separates always there over the whole circumfer
ence. The cylinder was set at the center of the test section and was 
supported to a strut at the most downstream section, which is the 
same as that constructed in the earlier heat transfer study [11]. The 
laser Doppler anemometer has recently been employed in the studies 
on the separated and reattached flow [4-7]. It may be considered that 
the uncertainty of the data obtained using the hot-wire anemometer 
is larger in the separated and reattached flow regions than that 
measured employing the laser Doppler anemometer. However that 
uncertainty may become small in other flow region and furthermore 
the hot-wire anemometer is easy to handle and analyze the data. In 
the present study therefore the mean and turbulent fluctuating ve
locities were measured using a constant temperature hot-wire ane
mometer. The measuring technique was almost the same as that in 
the earlier study for the two-dimensional flow [3] and its detail is 
omitted here. The only difference is that z -component of turbulent 
fluctuating velocity was measured by rotating the hot-wire in the 
plane parallel to x-z plane, and its inclination angles to the mean flow 
direction were 60, 90, and 120 deg, which were equal to those in the 
measurements of other two components of turbulence (at that time, 
the prong and support of the hot-wire were aligned in the plane par
allel to x-z plane). 

In the previous study, the Reynolds number formed with the up
stream uniform flow velocity Uo, the cylinder diameter d, and the 
kinematic viscosity of air v; Re = U^dlv was varied from 40,800-
68,000, and the mean flow characteristics were found to be, in general, 
independent of the Reynolds number [1]. In accordance with it, the 
present experiments were conducted at a constant free stream velocity 
Uo = 16.2 m/s and the corresponding Reynolds number Re = 42,100. 
The axisymmetry of the flow was confirmed to be satisfactory through 
the velocity profiles measured along three circumferential angles (say 
ip = 0, 90, and 180 deg) at three streamwise cross sections including 
the separated, reattached, and redeveloped flow regions (x/d = 0.7, 
1.8, and 5.0). No corrections were made to values of mean and tur
bulent fluctuating velocities for nonlinear responses of the hot-wire 
and the tunnel wall effects. 

The uncertainty of the present data shown in the following may be 
considered to be almost equal to that in the previous study [3]. That 
is: the uncertainty of nondimensional turbulence intensities 
-JlfilU, and y/w^/U may be about ±8 percent and that of nondi
mensional turbulent shear stress -uv/U2 about ±9 percent, where 
U denotes the local mean velocity along the mean streamline and u 

O 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

Fig. 2 Distributions of turbulent fluctuating velocities 

and v are the components of turbulent fluctuating velocity along and 
normal to the mean streamline, and w that parallel to the peripheral 
direction of the cylinder. Their uncertainty may exceed ±10 percent 
near the wall where the local turbulence intensities are large and 
furthermore it may be higher than ±30 percent in the separated and 
reattached flow regions where the unsteadiness of the flow is very 
severe. The geometrical positions are accurate to within about ±0.15 
mm.' 

Experimental Results and Discussion 
Mean velocity profiles in the separated, reattached, and redevel

oped flow regions are almost the same as those obtained in the pre
vious work [1] and the boundary-layer characteristics of the flow 
downstream of reattachment are also in very good agreement with 
those of [1], The point of zero skin friction (extrapolated value) oc
curred at about x/d = 1.3 which is nearly equal to those measured in 
the works [1, 11]. Accordingly these results are excluded from the 
present paper. 

Three components of turbulent fluctuating velocity and the tur
bulent shear stress at various sections along the cylinder axis are 
shown in Figs. 2 and 3. In the separated and reattached regions, 

<u? is larger than v V and y V and on the other hand, y/u2 and 
are roughly equal to each other. It is clear that the maxima of 

i W- , V » ' i and 
values are about 30, 20, and 20 percent of the free-stream velocity. 
Quite large scatter is found in the data for v V in the entire field in
vestigated in the present study. Similar feature also exists in the data 
for -sfw2 . The flow in the reattachment region may be considered to 
resemble that impinging on the cylinder surface and moreover the 
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Fig. 3 Turbulent shear stress distribution 
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flow region 

position of reattachment fluctuates randomly with time. It may be 
presumed that the large scatter of \A>2 data originates from this 
fluctuation and it continues for a long distance to some point quite 
far downstream from the reattachment point. 

Nondimensional turbulent shear stress is very large in the separated 
and reattached regions and it attains a value of about 0.02 just after 
the reattachment point. The turbulence intensities and the turbulent 
shear stress decrease quite steeply in the region from about x/d = 2 
to 3 and afterward they decrease gradually to the downstream. 
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Fig. 6 Streamwise variation of turbulent shear stress in redeveloped flow 
region 

In the separated and reattached flow regions, the flow direction is 
generally different from that of upstream uniform flow. Accordingly 
u and v are different from x and y -components of turbulent fluctu
ating velocity. Following the procedure by Bissonnette, et al., [12], 
x and y -components and their cross product were estimated from 
measured values of u2, v2, and — uu by 

ux
2 = u2 cos2 a — uu sin 2a + v2 sin2 a 

vy
2 = u2 sin2 a + uv sin 2a + v2 cos2 a 

u-xVy = (u2 — v2) sin 2a/2 + uv cos 2a 

(1) 

(2) 

(3) 

where ux and vy denote x andy-components of fluctuating velocity. 
a in the foregoing equations is the angle between x -axis and the flow 
direction in x-y plane. As already described in [3], yux

2, V 'v y
2 , and 

consequently —uxvy are quite different from y l ? , V ? . and —uv, 
respectively, in such flow regions, for example; in the present study 
—uxvy attains a maximum of about 0.025 at a cross section of x/d = 
1.8 (that of — uv is about 0.015). However, in the redeveloped flow 
region downstream of reattachment, their difference becomes very 
small since the flow direction is nearly equal to that of upstream 
uniform flow. 

In Figs. 4-6, streamwise variations of the turbulence characteristics 
in the boundary layer downstream of reattachment are shown. Kle-
banoff's data [13] for a turbulent boundary layer over a flat plate at 
zero incidence are included for reference. In these figures, S is the 
nominal boundary-layer thickness defined as the distance from the 
wall to a point of U/Um = 0.99, where Um is the velocity outside the 
boundary layer. The turbulence intensities, turbulent kinetic energy, 
and turbulent shear stress generally attain maxima at some point 
quite far from the cylinder surface. They decrease rapidly in the region 
close to the reattachment point to the downstream; however their 
decreasing rate becomes very slow beyond that. Difference of the re
sults at x/d = 8.0 and 10.0 is small as compared with those at the up
stream positions. Therefore it may be concluded that a longitudinal 
distance longer than at least 10 times the cylinder diameter is needed 
to reach the turbulence characteristics of a fully developed turbulent 
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Fig. 8 Prandtl's turbulent kinetic energy length scale 

boundary layer over a longitudinal circular cylinder. However their 
profiles are different from those of Klebanoff, especially in the outer 
part of the boundary layer, though the results for Vw^ become rela
tively close to those of Klebanoff at x/d - 10.0. 

It is very interesting to notice that the profile of turbulent shear 
stress is very similar to that of turbulent kinetic energy and also of 
streamwise component of turbulent fluctuating velocity, although 
a slight different feature is found in the region near the wall. As noted 
before, the data scatter is the largest for Vt/2 and it continues for a 
long distance. 

In Figs. 7 and 8, Prandtl's mixing length lm and turbulent kinetic 
energy length scale le are shown at several cross sections. The eddy 
kinematic viscosity is defined as 

em = -uv/(dU/dy) (4) 

and in terms of Prandtl's mixing length and turbulent kinetic energy 
length scale, em can be written, respectively, as follows [14]: 

lmHdU/dy) 

m f-ey & 

(5) 

(6) 

where k denotes the turbulent kinetic energy defined as k = (u2 + u2 

+ w2)/2. The data for lm by Klebanoff which were read from the book 
by Cebeci, et al., [15], are included for reference. Both lm and le in
crease almost linearly from the wall to points neavy/S = 0.2 to 0.3. It 
can be presumed from this fact that the mixing length and the tur
bulent kinetic energy length scale are approximated near the wall 

L •• Kmy a n d le = Key (7) 

Though quite large scatter exists in the outer region, it may be said 
that lm and le show no material change there. Accordingly it may be 
reasonable that the mixing length and the turbulent kinetic energy 
length scale are approximated by equation (7) near the wall and as 
constants Cm and Ce, respectively, in the outer region of the boundary 

0 . 5 -

® Present data 

o Ota et o\. 

1.5 

^ 
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p—o^ 

1 2 3 4 5 

Fig. 9 Streamwise variation of Km and K„ 

6 7 
x/ l 

15 

Id3 

k/Uo* '°" ' 
Fig. 10 Correlation between turbulent shear stress and turbulent kinetic 
energy 

layer, where the turbulent shear stress estimated by assuming lm or 
le constant may not be much different from measured one since the 
velocity gradient is very small. However values of Km, Ke, Cm, and 
Ce vary with the axial distance, as already described in the earlier work 
[3]. 

It is interesting to note that the turbulent kinetic energy length 
scale is roughly half the mixing length, and they reach maxima around 
at x/d = 5 and afterward decrease monotonically in the downstream 
direction. These features are clearly shown in Fig. 9 which expresses 
the estimations of Km and Ke in equation (7). The longitudinal dis
tance is normalized with the reattachment length /, which is 1.3d in 
the present study as noted before. Included in the figure for com
parison are the previous results for the two-dimensional flow over a 
blunt flat plate [3] in which the reattachment length is obtained as 
four times the plate thickness. Present values of Km and Ke attain 
maxima at about x/l = 3, and on the other hand, the previous ones at 
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about x/l = 2. The latter is very large in the region close to the reat
tachment point as compared with the former. They however become 
nearly equal to each other at about x/l = 3. 

Fig. 10 shows the correlation between the turbulent shear stress and 
the turbulent kinetic energy at several cross sections downstream from 
the reattachment point. That may be roughly described by an equa
tion of the form 

-uu/Uo2 = a(k/U0
2)n (8) 

where n = 1 corresponds to Bradshaw's model [14]. Values of a and 
n however vary with the axial distance. In general the present data 
deviate from the correlation given by equation (8) near the wall where 
the velocity gradient is large. However as shown in Fig. 10, it may be 
described that the turbulent shear stress is generally proportional to 
the turbulent kinetic energy and that an average line of the data is 
about — uv = 0.3k, as included in the figure. The value of 0.3 is smaller 
than 0.4 shown in the previous study [3], in which the turbulent kinetic 
energy, however, does not include the contribution from the spanwise 
component w2/2. Recent results determined by including w2/2 into 
k for the two-dimensional flow [16] are almost described by the same 
equation as in the present study. In the outer part of the boundary 
layer (small values of k and — uv), the data deviate from the afore
mentioned correlation. This may be originated from the low certainty 
of the data in such region since both k and —uv are very small. 

In F igs . l l and 12, the present results are compared with the pre
vious works for different flow configurations [3, 7,17-21] since there 
have been no appropriate data for the axisymmetric flow over bodies 
of revolution. Fig. 11 shows streamwise variations of maximum values 
of the turbulence intensities and the turbulent shear stress at each 
cross section. All the results show qualitatively same trends though 
the data for {—uv/Uo2)m by Ota, et al., [3], are a little different from 
others. The cross correlation between u and v may be much stronger 
in the two-dimensional flow than in the axisymmetric flow. However 

it is still not clear to the present authors why such high turbulent shear 
stress exists for the two-dimensional flow over a blunt flat plate. 
Previous data for ivu?/Uo)m, which were already referred in the 
earlier paper [1], are not included. Only published data for \ W in 
the separated and reattached flow may be those by Arie, et al., [17], 
for a flat plate with tail plate, and the present data are in good 
agreement with them. 

Present data for (Vu^/Uolm, (-/w^/Uo)m, and (-uv/Uo2)m reach 
maxima in the neighborhood of the reattachment point. On the other 
hand, there is no unobscured peak for ( v V / [ / n ) m there. The value 
of (VP/l/o) m is not shown in the region of x/l > 1.6, since distinct 
maximum value of v » ! does not exist at cross sections far down
stream from the reattachment point, as clearly understood from Fig. 
2. 

It is worth noting here that the data by Grant, et al., [21], and 
Etheridge, et al., [7], were obtained using the laser Doppler ane
mometer and others using the hot-wire anemometer. It may be more 
suitable to compare these results under the condition of normalizing 
them with the maximum velocity in the separated shear layer at each 
cross section in the separated and reattached flow regions and with 
Um in the redeveloped region. It was however not easy to get their 
values from the papers published, and therefore the data are com
pared in the present form. 

Fig. 12 compares the distributions of the turbulence intensities and 
the turbulent shear stress for the present axisymmetric flow and for 
the two-dimensional flow [3] at a cross section of about x/l = 1.5. Both 
of them indicate qualitatively the same trends, but the present data 
exhibit, as comparing with those for the two-dimensional flow, that 
the region affected by the separation and reattachment of flow is 
relatively small, that is; the turbulence intensities and the turbulent 
shear stress, approach those of the main flow outside the boundary 
layer at about y/S = 0.7, and their approaching rate, on the other hand, 
is very slow for the two-dimensional flow. 
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Concluding Remarks 
T u r b u l e n c e charac te r i s t ics in t h e separa ted , r ea t t ached , a n d 

redeve loped flow of air over a longi tudina l circular cyl inder having 

b l u n t leading edge were m e a s u r e d a t R e = 42,100 wi th a cons t an t 

t e m p e r a t u r e hot -wire a n e m o m e t e r . I t is shown t h a t t h e a p p r o a c h t o 

those of a fully developed t u r b u l e n t bounda ry layer n e e d s a d is tance 

longer t h a n a t least t e n t imes t h e cyl inder d iamete r . 

P r a n d t l ' s mixing l eng th a n d t u r b u l e n t k ine t ic energy l eng th s ca l e . 

a re p resen ted in the b o u n d a r y layer downs t r eam of the r e a t t a c h m e n t 

poin t . T h e y increase a lmos t l inearly nea r t h e cyl inder surface a n d 

the i r g rad ien t s increase in t h e d o w n s t r e a m d i rec t ion f rom t h e p o i n t 

j u s t d o w n s t r e a m of r e a t t a c h m e n t t o some po in t nea r x/l = 3(or x/d 

= 4) and subsequent ly decrease monotonical ly in t h e s a m e direction. 

In t h e redeveloped flow region, t h e t u r b u l e n t shear s t ress is roughly 

proport ional to t h e tu rbu len t kinetic energy, though qui te large scat ter 

is found t o exist. 

P r e s e n t d a t a for an ax i symmet r i c flow are compared wi th t h e r e 

su l t s for a two-d imens iona l flow over a b l u n t flat p l a t e a n d for o the r 

flow configurat ions, a n d the i r differences are discussed. 
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Flow in Narrow Curved Channels 
The flow through narrow, arbitrarily curved channels is formulated using intrinsic coordi
nates. An exact solution exists for constant curvature or circular arc boundaries. A pertur
bation scheme is used for the case of small, periodic curvature. The velocities and flow 
rates depend on both the curvature amplitude and the wave number. It is found that for 
a given pressure gradient per arc length, the flow may be larger for periodically curved 
channels than that of straight channels. 

I n t r o d u c t i o n 
The sheet flow in a curved, narrow channel is important in engi

neering and biological transport phenomena. For instance, the seepage 
flow through cracks and fissures of dams involve low Reynolds number 
flow through narrow channels. Also the pulmonary alveolar blood flow 
can be approximated by Stokes flow through narrow channels across 
which gasses are interchanged [1]. Fig. 1 shows such a channel in two 
dimensions. The position vector of the center line is given by 

R = X(s')l + Y(s')\ (1) 

where s' is the arc length along the center line and i, J, k are unit vectors 
in the Cartesian directions x', y', z', respectively. The unit tangent 
T is defined by 

T = 
ds' 

dX dY 
•• — i + — j 

ds' ds' 

According to the Frenet formulas [2] 
dj „ , dti 

— = K'N, — = -K'J 
ds' ds' 

(2) 

(3) 

where K'(s') is the curvature and N is the unit normal. The channel 
is bounded by two surfaces at a constant distance a from the center 
line and extended in the k-direction indefinitely. For uniqueness we 
require l/K' > a. Any position inside the channel is given by 

R(s') + »,N(s') + z'k 

-a < if < a 

(4) 

(5). 

where rf is the distance from the center surface in N-direction. The 
triad T, N, k constitutes an orthogonal coordinate system. From 
equations (2)-(4) we have 

Ifix'l2 = (1 - X V )2(ds')2 + W ) 2 + (dz')2 (6) 
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The coordinate system 

The scale factor in the s'-direction is thus (1 — K'rf). If the center line 
is straight, K' = 0 and the channel consists of two parallel flat planes. 
The purpose of the present paper is to investigate the effect of small 
but arbitrary curvature K'(s') on the flow generated by a given 
pressure difference in the s' and z'-directions. 

T h e G o v e r n i n g E q u a t i o n s 
Due to geometry, we expect the velocities are independent of the 

z'-direction. We then normalize all lengths with respect to o, the 
pressure with respect to fiU/a, the velocities with respect to U and 
K' with respect to 1/a. Here /n is the viscosity and U is a velocity scale. 
In what follows the unprimed variables are nondimensionalized. Let 
u, u, w be velocity components in the s, i\, z-directions, respectively. 
For a constant density fluid the continuity equation is 

- u + ^-l(l~KV)v] = 0 
ds oi) 

(V) 

The steady Navier-Stokes equations (see, e.g., [3]) give 

Re 
u d d\ 

1- v— u • 
• Ki\ os or)] 

- 1 dp 

Kuv 

1-Kr j . 

1 - Ki\ os 01) •Ki) 
— -—((l-Kr,)u) 
OS 01} 

(8) 

Journal of Applied Mechanics MARCH 1980, VOL. 47 / 7 

Copyright © 1980 by ASME
Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Re 

Re 

! u d d\ Ku2 

[l - Kr] ds dr,/ 1 - Kr] 

du\ d 
—— + — (vi-krivo) = 0 
os dr, 

dr, 1 — if?; ds 

1 

1 - i f r ; 
^ - f «l-tt,)u> 
ds dr; 

u d d , 
— \ - v — | w 

,\1 — Kt) ds drji 

dz 1 

1 

Kr, Ids (ri duA d f ,„ _, . dm 
— + — ( 1 - i f r , ) — 

Kr) dsj dr, I dr,. 

(9) 

(10) 

The boundary conditions are 

«i (±a) = u i (± l ) = wi (± l ) = 0 

(24) 

(25) 

Here Re is the Reynolds number pUa/p. The boundary conditions 
are that the velocities vanish on r, = ± 1 . Except in special cases, 
equations (7)-(10) are extremely difficult to solve exactly. In general, 
we shall assume the curvature, normalized by channel half width a, 
is small 

K(s) = efe(s), ( ID 

where e « 1 and k is of order unity. For narrow channels it is also 
reasonable to assume the Reynolds number is small, i.e., 

The first-order perturbation equations (21)-(25) can be solved in 
closed form for several special curvatures: k(s) equals constant, cos 
(Xs) and exp (±Xs) (including cosh (Xs) and sinh (Xs)). We shall be 
concerned with the more important cases k(s) = constant and k(s) 
= cos (Xs) only. 

Constant Curvature 
In this case the Navier-Stokes equations, equations (7)-(10), admit 

an exact solution. Although this solution may also be obtained from 
cylindrical polar coordinates, for consistency of notation we shall use 
the present intrinsic s, 17, z coordinates. 

Let the pressure be linear in r, and z. The solution to equations 
(7)-(10)is 

Re = ey = 0{t) 

The pressure, velocities are then expanded in terms of e 

p= p0+ epi + e2p2 + ... 

u = uo + evi + e2V2 + . . . 

u = vo + evi + e2V2 + • • • 

w = w0 + (Wi + e2W2 + ... 

The order e° terms from equations (7)-(10) are 

duo dv0 

dpo 
ds 

dpo 

dr) 

dpo 

dz 

—!2 + —!! = 
ds dr] 

d /dt>p 

d?7 Ids 

d IdVp 

ds Ids 

_ d2u>o , 
~ ds2 

= 0 

du0 

dr; 

du0\ 

" dr,/ 

dzu>o 

dr,2 

Given a zeroth-order linear pressure gradient, 

po = 2as + 2fiz + constant 

where a, /3 are constants of order unity, we find 

uo = a{r\2 - 1), vo = 0, w0 = /3(r,2 - 1) 

This is exactly Poiseuille's flow between flat parallel plates. 
The first-order correction is governed by 

y u0 — + v0— uo 
\ ds dr,/ 

c>Pi . dpo d Idvi dv0 , , dui 

ds ds dr, \ ds ds dr, 

' (U od7 + U o U l>0 

i>Pi . & (dvi . , . , i>v0 dui\ 
+ — — + kuo + kr] 

dr, ds \ ds ds dr, / 

+ «r, 

( d d \ dpi d Idwi , diwol 

Uo — + v0—lwo= - — + — \— + kv — 
ds dr,/ dz ds \ ds ds 

u = 0 (26) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

- 1 dp | (1 - K2)2 / l - K\ 1 
U " IK2 ds I 4K n \1 + KJ (1 - . Krj) 

4K 
[(1 - Kf In (1 - K) - (1 + K)2 In (1 + K)](1 - Kr]) 

-(l-Kr,)\n(X-Krt) (27) 

In ( 7 — § - } - 2(1 - 1,) + K(l - r,2 

1 - K\ \1 - K11) 

-ldp 
AKdz 

4 

1 U + *7 
(28) . 

Fig. 2 shows the velocity profiles u and w for various K. I t is seen that 
the maxima of velocities shift toward T, = 1 or toward the wall which 
has larger local curvature. Let the flow in the s-direction, per unit z, 
beF s . 

'•"Xi^^Sh^hlrrDl2-^) (29) 

The flow in the z -direction, per unit s, is 

Fz = f ' -wd - Krfidn 

~K2dz\K 2K In (1 - K) + K + - (1 - K)2 In (1 - K) 

- - ( 1 + K ) 2 l n ( l + K) i*m (30) 

These functions are plotted in Fig. 3. We see that increased cur
vature decreases the azimuthal flow F? but increases the axial flow 
Fz. In the limit of K — 0 

(21) 3 ds ' * ~* 3 dz 
(31) 

These are the flow rates for plane Poiseuille flow. In the limit of K -* 
1, which approximates a circular cylinder with a thin wire at the 
center, 

2 ds 
F . - -

dp 

dz 
(32) 

_d_ Idvp _ dug\ 

ds \ds dr, / 
(22) 

+ A[^l_^M + feJ^o+d2
i£o\ (23) 

drj \ dr, dr, / \ dr,2 ds 2 / 

Although the results of this section is valid for 0 < K < 1, end effects 
should be considered when K is not small. 

Sinusoidal Curvature 
The geometries of the center line for if = f cos Xs are shown in Fig. 

4. Notice these curves are periodic but not simple harmonic. We shall 
limit to X ^ 0.472, in order to avoid cross overs of the center line. 
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Fig. 4 Center-line geometries for sinusoidal curvature 

Fig. 2 Velocity profiles for constant curvature 

0.5 
K 

Fig. 3 Axial and azlmuthal flow rates for constant curvature 

For small curvature the zeroth-order solution is given by equation 
(20). We assume the mean pressure gradient is given by equation (19). 
The first-order equations, equations (21)-(24), reduce to 

drj \ ds d»j / ds 

d 

ds Ids 

dui 

d7), 

b2u>i 

ds2 

dui 

ds 

drj 

d2W\ 

or? 

d7) 

dh 
= a— 

dt 

2|8ftj) 

= 0 

If k = cos As, we set 

" l = /'(>)) cos Xs, vi = f(rj)\ sin Xs 

wi = g(y) cos Xs, p i = <p(jj) sin Xs 

Equations (33)-(36) reduce further to 

/ '" - X2/' - X<p = 4a»j 

\f" - X3/ - <p' = Xa())2 - 1) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

Fig. 5 Schematic diagram of the flow In a periodically curved channel 

with the boundary conditions 

/ ' ( ± D = / ( ± l ) = i f ( ± l ) = 0 

The solutions are 

2a cosh X 

(42) 

X2 (sinh X cosh X + X) 

X (») sinh X?j 

= 2)3 /sinh X?? \ 
8 ~ X2 I sinh X ' j 
4a cosh X sinh Xr; 

tanh X cosh X?j) (?j2 - 1) 
X2 

2a 
<P: 

X(sinh X cosh X + X) X 

(43) 

(44) 

(45) 

As in the case of constant curvature, we find the velocities increase 
toward the side of larger local curvature. The stream lines shift from 
side to side, seeking a less tortuous path than those described by the 
walls. The pressure, 90° out-of-phase, is maximum on the "windward" 
side of the walls (Fig. 5). 

The first-order solutions are periodic in s and do not contribute to 
the mean flow through the channel. Let us use a bar to denote the 
nonperiodic part (in s) of a variable. The nonperiodic, order «2 terms 
of equations (7)-(10) are 

0< 
ds 

_d_ 

dri 
kU\ + 1) \k— 1- k2Uo 

ds \ ds / djj \ di) dij / Orf 

dp2 

ds 2 orf or] 

du)0l 
i 

or] 

dr; 

After integration we find 

= 0, 
ov2 O — 

= — (rikvi) 
drj or) 

(46) 

(47) 

(48) 
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Fig. 6 Flow rate perturbations Gs and Gz 
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P2 = v2 = 0 (51) 

The mean flows per unit width are 
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_ _3_ f 1 _ A2 1 

2X213 15 (sinh X cosh X + A) 

X cosh A sinh A \~z + 1 cosh2 A A 

I \X2 j X X . 
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- 4 / 3 , • [1 + €2G* + 0(e4)] 

o.-4=+- 3 cosh X 

(53) 

(54) 

(55) 
2X2 2X4 2X3 sinh X 

Fig. 6 shows Gs and G2 as a function of X. G2 is always positive, indi
cating an increase in axial flow due to curvature. As X increases, Gz 

decreases to zero. The function Gs, however, behaves differently. 
There is a decrease in flow for 0.472 < X < 2.567 and an increase in 
flow for X > 2.567. As X approaches infinity Gs approaches 1/10. The 
foregoing conclusions are for a given nonzero curvature amplitude e. 
If the channel were straight, we have € = 0 and FS,FZ both reduce to 
the correct Poiseuille flow rate. We arrive at the important result: For 
a given pressure gradient, the mean flow in a periodically curved 
channel may be larger or smaller than that of a straight channel. 

Discussion 
The flow in symmetrical channels with slowly varying curvature 

of the walls has been studied by Langlois [4] and Fraenkel [5]. The 
center line is straight while the channel width varies. Both authors 
used wedge flows to approximate local flow distributions. In the 
present paper the channel width is the same and the curvature of the 
center line varies slowly. This kind of problem can be studied only , 
through the use of the intrinsic coordinate system developed here. 

By assuming the curvature is much smaller than the channel width, 
we are able to solve for the fluid flow in arbitrarily periodically curved 
channels. Although the Reynolds number is assumed to be of order 
€, the inertial terms affected neither the first-order solution nor the 
second-order mean flow in periodically curved channels. 

We have studied one Fourier component of the curvature of a pe
riodically curved channel. Since the Navier-Stokes equations has been 
linearized by the perturbation scheme, one can superpose other 
Fourier components. In the current analysis, the wave number A is 
assumed to be of order unity. This assumption may be relaxed since 
large A does not alter the order of magnitude of the results. 

The straight channel is still the most efficient for the delivery of 
fluid between a given distance. However, in this paper, the pressure 
gradient is not based on direct distance, but based on unit arc length 
s, or unit surface area. We found that for given surface area (a con
dition used in transport processes) the periodically curved channel 
may be more efficient. 

For the s -direction flow this phenomenon can partially.be explained 
as follows. The flow rate decreases as the fluid turns a curve as indi
cated by our constant curvature result. However, the flow also tends 
to increase for periodically curved channels since, from Fig. 5, the bulk 
of the fluid takes a more direct path than the pressure gradient (which 
is based on the longer center-line arc length). For large X the latter 
reason prevails and we have a net increase in flow. 

The z -direction flow is parallel. The only other paper which con
siders parallel flow between wavy plates is due to Wang [6]. In that 
paper the maximum curvature is assumed to be much larger than 
(mean distance between the plates) - 1 , while the present paper as
sumes the opposite, that the curvature is much smaller than (mean 
distance)""1. However, in [6], it was noted that the flow rate may be 
increased by increasing the phase shift of the plates, while both the . 
cross-sectional area and the wetted perimeter remain the same. 

The present paper yields a similar result. While the curvature 
changes neither the cross-sectional area nor the boundary surface area 
(wetted perimeter), the z -direction flow per unit s is larger for curved 
channels (whether the curvature is constant or periodic) than that, 
of the straight channel. We, therefore, make the following conjecture. 
In the set of all parallel flows with same cross-sectional area and the 
same wetted perimeter, the minimum flow rate occurs with the ge
ometry which yields the least variation in surface shear. This situation 
corresponds to the in phase flow of [6] and the straight channel of the 
present paper. 
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Experimental results are presented for impact of two parallel plates of 6061-T6 Alumi
num, skewed at an angle of 26.6° from the axis of the projectile. A transverse displace
ment interferometer (TDI) [1] with a 200 lines/mm grating is used to monitor the 
transverse motion of the rear surface of the aluminum target plate. Two first-order dif
fracted laser beams are used for this TDI with a resulting sensitivity of 2.5 nm per fringe. 
In addition the normal motion of the rear surface is monitored simultaneously by means 
of a velocity interferometer [2] in which the zeroth-order diffracted beam is used as the 
beam reflected from a moving mirror. Comparison of the velocity-time profiles of the tar
get rear surface with those predicted by the analysis given by Abou-Sayed and Clifton [17] 
indicates that the computed transverse velocity-time profiles have regions of steeper 
slope than observed in the experiments. This discrepancy appears to be mainly due to the 
inadequacy of the assumption of isotropic hardening and the Huber-Mises yield function 
in the analysis [17]. The sensitivity of the transverse velocity profiles to the plastic flow 
characteristics of the material suggests that the pressure-shear impact experiment, when' 
used with a TDI, is a good technique for the study of material properties at very high 
strain rates (10* ~ 105 see'1) and under postshock conditions. 

Introduction 
Plastic wave problems of combined compression and shear in solids 

have been an interest of many investigators in the past two decades 
[3-19]. One-dimensional plane wave problems involving combined 
stresses have received primary attention, since these waves provide 
varied stress paths for probing the flow characteristics of solids, yet 

' the analysis is relatively simple. While considerable theoretical work 
has been done on the problem [10-17], relatively few experimental 
studies have been attempted. Although a technique for an oblique 
impact experiment was introduced by Abou-Sayed and Clifton [18, 
19], lack of sensitivity in the dynamic Moire technique [18] used for 
monitoring transverse displacements has discouraged further use of 
thisjechnique. Recently, the authors and Kumar have developed a 
•new transverse displacement interferometer (TDI) [1] that allows the 
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transverse motion of a surface to be measured with satisfactory sen
sitivity for such experiments. The normal component of the surface 
motion can be monitored by means of standard laser interferometer 
techniques that have been developed and used for the usual plate 
impact experiments at normal incidence. These optical techniques 
could also prove to be useful in the shear wave experiments employing 
nonparallel impact faces [20,21] since they would allow simultaneous 
monitoring of normal and transverse motion and would not be limited 
to nonmetallic materials. 

Many research workers have investigated the behavior of aluminum 
at high strain rates and tried to establish constitutive relations that 
model its behavior as an elastic/viscoplastic material [22, 23], Most 
investigations have depended on normal plate impact experiments 
for determining values of parameters in the models. However, the 
longitudinal wave profiles appear to be less sensitive to the dynamic 
flow relations than transverse wave profiles because the hydrostatic 
pressure makes the longitudinal wave profile depend largely on the 
elastic compressibility of the material, except for a region of small 
plastic strains near the wave front. 

In this work, a TDI is used together with a normal velocity inter
ferometer (NVI), to monitor simultaneously, and at one point, the 
normal and transverse components of the particle velocity of the free 
rear surface of a 6061-T6 Aluminum target subjected to symmetric, 
skewed (26.6° from normal impact) impact at a projectile velocity of 
approximately 0.22 mm/^sec. The experimental results are compared 
to theoretical predictions based on an elastic/viscoplastic model for 
6061-T6 Aluminum [17]. Results show that the experimental 
transverse velocity-time profile following the elastic precursor rises 
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Fig. 1 Schematic of pressure shear experiment 

initially more slowly than predicted by the analysis. This discrepancy 
appears to be due primarily to the analysis using a model that does 
not account adequately for the stress path dependence of plastic 
flow. 

Experimental Procedure 
Plane waves of combined compression and shear were generated 

by impact of two skewed flat plates of 6061-T6 Aluminum as shown 
in Pig. 1. A disk (50.80-mm dia, 3.20 or 6.35-mm thick) of 6061-T6 
Aluminum was used as a target specimen. The disk contained four 
5-mm-dia holes, equally spaced on a circle of 38.10-mm dia. Each of 
these holes contained a 3-mm-dia contact pin held in place by epoxy 
resin. The fronts of the pins were set in the plane of the front surface 
of the specimen within a tolerance of 0.2 fim. The specimen and the 
flyer plates were lapped flat to better than 1 /nm over the width of the 
plates. Surface roughness was approximately 0.03 \xm. 

A 63.5-mm single-stage gas gun capable of launching projectiles at 
velocities up to 0.3 mm/^sec was used to accelerate the flyer. Details 
of the gun have been described by Abou-Sayed and Clifton [18]. The 
target was mounted in a chamber evacuated to a pressure of 50 nm 
Hg before the shot in order to minimize the air cushion between flyer 
target. The velocity of the projectile was measured by recording the 
times at which a series of voltage-biased thin wires were shorted out 
by contacting the flyer as shown schematically in Pig. 1. Angular 
misalignment between the flyer and target at impact was determined 
by recording the times at which the four voltage-biased contact pins 
make contact with the flyer. Initial alignment of the target impact face 
parallel to the impact face of the flyer is accomplished by an optical 
technique developed by Kumar and Clifton [24]. This technique in
sures initial parallelity to an accuracy of 2 X 10~6 rad, which is con
siderably better than required. The transverse and normal compo
nents of the motion of the target rear surface were monitored, re
spectively, by means of the TDI and NVI as shown in Fig. 2. The 
diffraction grating on the rear surface of the target specimen was 
obtained by copying a 200 lines/mm ruled glass grating directly onto 
the mirrorized surface using a photo-resist process with Kodak 747 
negative photo-resist. 

For the TDI the two first-order diffracted beams were used for shots 
1-8; the two second-order diffracted beams were used for shot No. 9. 
The resulting sensitivity, d/2n [1], where d is the pitch of the grating 
and n is the order of the diffracted beams, was 2.5 /*m of transverse 
displacement per fringe for shots 1-8 and 1.25 /im per fringe for shot 
No. 9. The incident and reflected beams are aligned to lie in the plane 
perpendicular to the grating and parallel to the grating lines. This 
alignment eliminates the need for correcting the recorded displace
ment due to non-normal incidence of the laser beam [1], since the 
diffracted beams are perfectly symmetric and unaffected by the 
normal motion of the surface. 

The zeroth-order reflected beam was used for the NVI. The delay 
leg length was 1745 mm, which corresponds to a delay time r = 5.82 
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Fig. 2 Schematic of traverse displacement interferometer with normal ve
locity interferometer 
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Fig. 3 Normal velocity-time profile at the rear surface 

ns. The light source used for the TDI and NVI was an argon ion laser 
with a maximum output of 1.5 watts of single mode, single frequency 
light at a wavelength of X = 5.145 X 10-4 mm. With these values for 
delay time and wavelength the sensitivity, X/2r [25], is 0.0442 mm/̂ is 
per fringe. The diameter of the laser beam was 1.3 mm. Monsanto 
MD-2 photo diodes were used as detectors, and the detected signals 
were recorded on Tektronix 7704 and 7904 oscilloscopes for the TDI 
and NVI, respectively. Both scopes were triggered, after a preset delay, 
by the first step output of the logic circuit used in measuring the tilt. 
Data from photographs of the oscilloscope traces were reduced by 
reading the times between the phases of the traces by means of a 
traveling microscope. For the NVI, the velocity-time relation mea
sured at 30 points using the aforementioned technique was displayed 
on a graph and interpolated graphically. Since the TDI gives a dis
placement-time relation, the displacement was differentiated with 
respect to time by means of a cubic spline interpolation method which 
is described in the Appendix. The standard deviation of the error in 
the recorded displacement at a given time is estimated to be ap
proximately 1.0 X 10"~2 nm; the corresponding error in the transverse 
velocity is expected to be less than 1.0 X 10~3 mm/fiaec. 

Experimental Results 
A summary of the experiments is given in Table 1. The two low 

velocity impacts, shots 1 and 2, were carried out to determine whether 
or not slip occurs at the interface between the flyer and the target. In 
these shots the target remains nearly elastic. The TDI record in shot 
No. 2 indicates that the transverse velocity reached the transverse 
component of the projectile velocity, demonstrating that no slip oc
curred at the impact face. 

A velocity-time profile of the normal component of particle velocity 
at the target rear surface is shown in Fig. 3 for one of the higher ve
locity shots—shot No. 7 with a projectile velocity V0 = 0.215 mm/jitsec. 
The oscilloscope trace of the normal velocity interferometer (NVI) 
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Table 1 Summary of pressure-shear impact experiments on 6061-T6 Aluminum 

Shot 
No. 

1 

2 

3. 

4 

5 

6 

7 

8 

9 

Target 
Thickness 

(mm) 

6.35 

6.35 

6.35 

6.35 

6.35 

3.20 

3.20 

6.15 

6.15 

Projectile 
vel. (mm/usec) 

0.074 

0.076 

0.214 

0.213 

0.214 

0.214 

0.215 

0.215 

0.168 

Skew Angle 
(degrees) 

26.6 

26.6 

26.6 

26.6 

26.6 

26.6 

26.6 

26.6 

26.6 

Tilt Angle 
(radians) 

0.5 x 10_lt 

2.0 x 10"M 

-

1.0 x lO"1* 

1.0 x 10""4 

6.0 x lO-"* 

0.5 x 10"1* 

12.6 x 10~"* 

12.2 x lO"14 

Laser Power 
(mW) 

700 

700 

700 

200 

800 

200 

200 

200 

200 

Remarks on 
Oscilloscope Traces 

Poor traces due to 
mode transition of 
laser 

Poor NVI trace due 
to poor surface re
flectivity 

Projectile velocity 
pin squeezed between 
impact faces 

Excellent traces 

Poor TDI trace due 
to poor surface re
flectivity 

No NVI trace due 
to late trigger 

Excellent traces 

No NVI trace 

Excellent traces 
2nd order beam 
used for TDI 

THEORY 
EXPERIMENT 

i . 0.04 
E 
E 

0.02 

0.01 

0 1.0 I.I 1.2 1.3 1.4 1.5 1.6 
TIME AFTER IMPACT, /j.sec 

Fig. 4 Transverse velocity-time profile at the rear surface 
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Fig. 5 Transverse velocity-time profile at the rear surface {specimen 
thickness 6.2 mm) 

is as clean as usually obtained when a grating is not used. The pro
jectile velocity for shot No. 7 produces normal and transverse com
ponents of the particle velocity at the impact face of 0.096 mm/^tsec, 
and 0.048 mm//usec, respectively. These particle velocities correspond 
to initial tractions at the impact face of 1.65 GPa normal stress and 
0.41 GPa shear stress, assuming instantaneous elastic response of the 
flyer and target. 

Velocity-time profiles of transverse components of particle velocity 
at the target rear surface are shown in Figs. 4 and 5. Recorded profiles 
for two shots (6 and 7) on 3.2-mm-thick targets are shown in Fig. 4 in 
order to give an indication of the reproducibility of the results. A re
corded profile for one shot (No. 8) on a 6.15-mm-thick target impacted 
at a comparable projectile velocity is shown in Fig. 5 in order to show 
the change in wave profile with distance of propagation. 

The oscilloscope trace shown in the insert in Fig. 4 is from shot No. 
6 due to the better photographic quality obtained by using the Tek
tronix 7904 oscilloscope for the TDI in this shot. The toe at the front 
of the oscilloscope trace for the TDI presumably corresponds to 

transverse displacement resulting from an oblique reflection of the 
longitudinal wave at the free surface. The oblique incidence of the 
longitudinal wave is due to the tilt between the impact faces of the 
flyer and target. This tilt was measured to be approximately 0.6 mrad, 
which would cause the normal to the longitudinal wave front to de
viate from the normal to the rear surface by approximately 0.018 rad 
(1.03°). For a longitudinal plane wave of this angle of incidence the 
predicted ratio of transverse to longitudinal velocity is 0.015, which 
gives a peak transverse velocity of 0.003 mm/ftsec. This value com
pares favorably with the peak transverse velocity in the toe region in 
Fig. 4. The dashed line beyond 1.5 /usee in Fig. 4 indicates the recorded 
transverse motion after the longitudinal wave reflected from the rear 
surface has made a round trip in the target. Since the effect of this 
reflected wave is not included in the theoretical curve, comparison 
between theoretical and experimental profiles is not meaningful be
yond 1.5 /usee after impact. 

The experimental results have been compared with computed ve
locity-time profiles [17], although the thicknesses of the targets for 
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these experiments are different from that (2 mm) used in the analysis 
[17]. Such comparisons are possible, however, since the solution [17] 
shows that a simple wave pattern develops at distances remote from 
the impact face. Thus the comparison is made by extrapolating the 
computed solution to the thicknesses of 3.2 mm and 6.15 mm by as
suming that the solution remains constant along lines x/t = constant 
where x is distance from the impact plane and t is time from im
pact. 

Fig. 3 shows that the extrapolated and recorded normal velocity 
profiles agree reasonably well. However, the extrapolated solution 
does not account for elastic precursor decay between 2.0 and 3.2 mm, 
and the observed main plastic wave profile is slightly more spread out 
than obtained by the simple wave extrapolation. In Fig. 3 the dots on 
the theoretical profile denote arrival times of wavefront-like features. 
The first'dot corresponds to a reflection from the elastic plastic 
boundary shown in Fig. 8 of [17]. The second dot is the arrival time 
of an elastic longitudinal wave emanating from the interaction of the 
reflected longitudinal wave front and the oncoming shear wave front. 
The third dot represents the arrival time of the elastic shear wave. In 
the experiment, the first two arrival times are consistently observable 
although the second one is not as distinguishable to noise that is 
presumably related to inhomogeneous deformation on the scale of 
grain sizes. The arrival time indicated by the first dot is consistently 
a few nanoseconds earlier than expected from the theoretical anal
ysis. 

Figs. 4 and 5 show that there are significant discrepancies between 
the theoretical and experimental transverse velocity-time profiles at 
early times after the arrival of the front of the shear wave. The dis
crepancy in the precursor decay of the transverse wave may be due 
to the lack of precursor decay beyond 2.0 mm in the extrapolated 
solution. However, the discrepancy behind the wave front suggests 
a fundamental inadequacy of the theory. This discrepancy persists 
for longer durations in the case of thicker targets—presumably be
cause of the spreading of the wave with distance of propagation. The 
dashed curve in Fig. 5 shows that the spreading of the observed ve
locity-time profiles between 3.2 mm and 6.15 mm is essentially the 
same as for centered simple waves in which a given level of particle 
velocity propagates along a line x/t = constant. 

The discrepancy at early times after arrival of the shear wave front 
is believed to be due primarily to the loading history dependence of 
plastic deformation. The analysis [17] shows that the loading path 
follows the axis of the normal stress, say o\\, until the shear wave ar
rives and then turns at essentially a right angle to proceed in the di
rection of the axis of the shear stress, say a\i- Since the latter direction 
is tangent to the locus of states of constant equivalent plastic strain 
rate (second invariant of the plastic strain rate tensor), it follows that 
the analysis predicts only a small increase in strain rate when the shear 
wave arrives. On the other hand, experiments on path-dependence 
of plastic deformation in polycrystalline aluminum [26,27] show that 
the yield surface tends to elongate in the direction of loading and 
develop a higher curvature segment at the intersection of the loading 
trajectory with the current yield surface. Such experiments indicate 
that a right angle change in direction of the stress trajectory would 
initially cause a higher rate of plastic deformation than predicted by 
an isotropic hardening model. This higher plastic strain rate would 
cause greater attenuation of the plastic wave in regions corresponding 
to the early stages of loading in the direction 012. Such changes in the 

. computed wave profile in Figs. 4 and 5 would tend to improve agree
ment between theory and experiment. In related work, Guldenpfennig 
and Clifton [28] found that use of a self-consistent slip model for 
trajectories involving right angle changes in loading direction gave 
better agreement with experimental results on combined longitudinal 
and torsional plastic waves than were obtained using models which 
employ smooth yield surfaces that do not sharpen in the direction of 
loading. 

C o n c l u d i n g R e m a r k s 
The oblique plate impact experiment, employing a TDI, appears 

to be a useful technique for studying material behavior at high strain 

rates. The results show that the transverse velocity profile is clearly 
more sensitive to the constitutive relations than is the longitudinal 
velocity profile. In addition, the transverse velocity profile gives the 
relatively long time history of the flow characteristics of solids, 
whereas the longitudinal one does not because the plastic strain rate 
decreases as the stress state becomes more nearly that of hydrostatic 
pressure. 

Improved agreement between theoretical predictions and results 
of pressure shear impact experiments appears to require improved 
constitutive models for plastic flow. Comparisons presented here 
suggest that models are required which characterize plastic flow 
characteristics accurately along loading trajectories with sharp 
changes in direction. 

As an extension of the present work it should be possible to use the 
pressure-shear configuration in a reverberation experiment [29] de
signed to study stress-strain relations at very high strain rates, say 
104-10B sec - 1 . In such experiments a thin specimen would be sand
wiched between two hard elastic disks and subjected to pressure-shear 
impact by a hard flyer plate. Then, the longitudinal wave generated 
at the impact face would arrive at the specimen and build up hydro
static pressure; the following shear wave could be used to measure the 
flow stress of the material at high pressure and high strain rate. 

Further development of the pressure-shear technique should de
termine whether or not a window material can be placed behind a 
grating on the rear surface of a target and whether a grating will re
main bonded to a free surface for high velocity shots, say above 1.0 
mm//usec. If not it may be necessary to use a TDI based on scattered 
light from a rough surface instead of a grating. This possibility is 
discussed briefly in [1]. 
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APPENDIX 
Michelson-type displacement interferometers have been used for 

the measurement of the motion of a surface. However, the output of 
the interferometer gives displacement-time relations whereas ve
locity-time relations are required. The recorded information is the 
finite set of data points (£;, u;; i = 0 , 1 , . . . , n) where t;, u; are, respec
tively, the time and displacement coordinates of the ith point. If we 
define the measured average velocity during an interval from t,- to t;+i 
as Vi = (u,'-i-i — ui)/(ti+i — t;), then u; tends to oscillate or be scattered 
in a broad band since errors in recorded values of U; and t; cause vi-i 
and vi to deviate in opposite directions. To reduce such scatter it is 
better to ominimize the average curvature of the interpolated dis
placement-time profile under a side condition that constrains de
viations from the recorded values. This condition can be written as 

minimize 

under the side condition 

J 'tn 
[ii(t)] 

to 
Ht 

E M t i ) - i * i ] 2 = ( n + l ) < r 2 

(la) 

(16) 
j=o 

where u(t) represents the interpolated displacement function and 
a is the standard deviation. The problem can be solved by minimizing 
the functional 

J[u] = C" [u(t)fdt + a E \u{ti) - mf (2) 
Jto ;=o 

where a is a Lagrangian multiplier. The first variation of (2) becomes, 
after integration by parts, 

8J[u] E [ii8u -a5u] | (
( ;_ 1 + I "uSudt 

;=i Jt0 

+ a E ["(*;) - ui\hu(ti) 
i=0 

(3) 

We seek the function u(t) for which the variation 8J[u] vanishes for 
all trial functions u(t) + 8u(t) that are continuous and have contin
uous first and second derivatives on the interval (to, tn). 

In order for the integral in (3) to vanish the function u(t) must 
satisfy U(t) = 0 everywhere in the interval (to, t„)- Thus u(t) must 
have the form 

u(t) =cn + bi(t - t,_i) + a(t - ti-i)2 + di(t - t ; - i ) 3 

for ti-i « t <ti, i = 1, ,n (A) 

where a,-, 6;, c;, d; are constants to be determined from the continuity 
of u, u, and ii at t = *,- and consideration of independent variations 
of bu(t) and 8ii(t) at data points t = t{. 

The continuity of ii(t) reduces the sum in (3) involving 8u to 

-u(t0)ou(to) + u(tn)8u(tn). 

This variation is made to be zero by restricting the admissible class 
of trial functions to those which satisfy 8il(t0) = 0 and 8u(tn) = 0. 
That is, the initial and final velocities, ti(tn) and u(tn) are specified. 
The specified values are obtained by least-squares interpolation near 
t = to and t = tn. Then, two conditions on the coefficients in (4) are 
obtained from 

6i = u0 

bn + 2c„(t„ - t„-x) + 3dn(tn - t„_!)2 •• 

(5a) 

(5b) 

where iio and un denote the independently determined values of ii(t0) 
and ii(tn). 

The conditions on the constants in (4) arising from independent 
variations 8u(ti) are 

- u ( t r ) + u(ti+) + a[u(ti)-Ui] = 0 i = l, . . . , n - \ (6a) 

fi(t0+) + a[u(t0) - u0] = 0 (6b) 

-u(t„-) + a[u(tn) - un] = 0 (6c) 

where, for example, «(£,-"") and u( t , + ) denote the limiting values of 
u(t) as t; is approached with t < t; and t > t,-, respectively. Substi
tution of (4) in (6) gives 

6(dj+i — di) + aa;+i = cm,- i = 1, 

6di + aai = aug 

. , n - l (6a)' 

(66)' 

- 6 d „ + a[a„ + 6„(t„ - tn-i) + cn(tn - t„_i)2 

+ dn(tn - t„_!)3] = aun (6c)' 

The remaining conditions on the undetermined constants are ob
tained from imposing the continuity of u, it, and u at t = t;, i = 1 , . . . , 
n — 1. These continuity conditions give 

a; - a;+1 + bi(U - ti-i) + Ci(ti - t ; - ! ) 2 + d^U - t . - i ) 3 = 0 (7a) 

6 i -6 , - + i + 2 c 1 ( t i - t i _ i ) + 3d i ( t i - t 1 - - i ) 2 = 0 (76) 

ci - c;+i + Miik - ti-i) = 0 (7c) 

Equations (5), (6)', (7) constitute An linear algebraic equations in 
the An unknowns a,-, 6;, a, d;, ( = 1 , . . . , n. For a prescribed value of 
the parameter a, these equations can be solved for the An unknowns. 
Since a is not known a priori, but is obviously related to the standard 
deviation a2 in (16), the solution is obtained in an iterative manner 
by adjusting a until the value of c2 obtained from (16) agrees with an 
estimated value, say a2, obtained using displacement differences re
sulting from repeated reading of a representative oscilloscope trace 
to calculate the sum in (16). An initial choice for a, say a(1), is the value 
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for which the two terms in (2) are comparable in magnitude. This 
selection gives 

y ( l ) : 
(u)2At 

where 

(u)2At : 
1 n - 1 

— z -
n — 1 ;=i t, 

Ui+i- Ui - Ui-\ 

• ti ti — t'i-i 

(8) 

(9) 

Experience shows that (8) provides quite a good first approximation 
of a. Since a2 increases monotonically with decreasing a it is a rela
tively easy matter to choose successive approximations for a so that 
a2 converges to a\. Once a set (a,-, 6,-, c,-, du a) is found that satisfies 
(5), (6)', (7) and provides a satisfactory value of a2 in (16), then the 
velocity-time profile u(i) that is sought is 

v(t) = u(t) = bt + 2c;(t - U-i) 

+ 3d ;(t - tj_i)2, t i - ! < t < th i=l,...,n (10) 
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An Explosive Loading Technique for 
the Uniform Expansion of 304 
Stainless Steel Cylinders at High 
Strain Rates1 

A new explosive loading technique is applied to study the uniform plastic expansion and 
fracture initiation of 304 stainless steel cylinders. An annular layer of dry PETN high ex
plosive is placed in contact with the inner diameter of the cylinder and surface-initiated 
with an array of etched copper bridgewires. This technique produces a simultaneous deto
nation of the explosive and a nearly uniform expansion of the stainless steel cylinders. 

Introduction 
Development programs concerned with the simulation of radia

tion-induced impulse loads [1-4], the containment of high explosives 
[5], and safety problems in the nuclear industry [6] have created a need 
for new experimental methods which examine the response of struc
tures at high strain rates. Data from the rapid expansion of thin rings 
[7] and cylinders [8] have provided basic information on rate effects, 
shear banding and fracture. The referenced loading techniques, 
however, are limited in impulse magnitudes and a new loading tech
nique with a larger magnitude capability was developed to examine 
the expansion of thicker walled cylinders. 

A simultaneous loading technique with sufficient impulse magni
tude to study the plastic expansion and fracture of'6.35mm (0.25 in.) 
thick, stainless steel cylindersis presented. Thin (3,0 to 4.3 mm or 0.12 
to 0.17 in.) annular layers of dry PETN high explosive are surface-
initiated with arrays of etched copper bridgewires. This technique 
produces a simultaneous detonation of the explosive, rather than a 
sweeping load [9], and a nearly uniform expansion of the stainless steel 
cylinders. In addition, loading with low density PETN does not spall 
or cause other material damage through the thickness of the test 
cylinders. 

Three stainless steel cylinders were expanded to strain rates up to 
4100 s_1 . The plastic expansion and strain rate to cause fracture are 
compared with other data in the literature. 

1 This work was supported by the U.S. Department of Energy. 
Contributed by the Applied Mechanics Division for publication in the 

JOURNAL OP APPLIED MECHANICS. 
Discussion on this paper should be addressed to the Editorial Department, 

ASME, United Engineering Center, 345 East 47th Street, New York, N. Y. 
10017, and will be accepted until June 1,1980. Readers who need more time to 
prepare a discussion should request an extension from the Editorial Depart
ment. Manuscript received by ASME Applied Mechanics Division, January, 
.1979; final revision, July, 1979. 

Experiments 
Loading Technique. A simplified section through the test setup 

is shown inFig. 1. Mylar insulation located on the inner surface of the 
steel cylinder and on the surfaces of the phenolic tube is omitted from 
the sketch. The phenolic tube between the mesh and copper return 
provides a uniform low inductance circuit to all current paths and the 
desired thickness for the PETN is obtained by varying the tube 
thickness. PETN is packed between the copper mesh supported by 
the phenolic tube and the inner walls of the test specimen and guard 
rings. Additional photographs of a similar test setup for a specific scale 
model test are given in [10]. 

The mesh pattern shotyn in Fig. 2 is 18 fim (0.7 mil) thick copper 
foil bonded to Mylar and chemically etched by the techniques used 
to manufacture printed circuits. A15 jitF capacitor bank is connected 
to the mesh pattern, and when the bank is switched at 20 kV the in
dividual bridgewires are electrically exploded by the discharge cur
rent.2 The bridgewires detonate the PETN with a high density of 
initiation points (2.5 X 104 m - 2 or 16 in. -2) and produce a uniform 
internal loading on the stainless steel test cylinder and guard rings. 

Specimens. Test specimens were cut to 0 127 m (5.0 in.) lengths 
from a 304 stainless steel seamless tube (specification ASTM-A511) 
with outer diameter 0.127 m (5.0 in.) and wall thickness 6.35 mm (0.25 
in.). Two guard rings of length 38.1 mm (1.5 in.) were also cut for each 
specimen and glued to the ends of the test cylinders. The uniformly 
detonated explosive loads the test cylinder and guard rings over the 
total length 0.203 m (8.00 in.). 

Cylinder Expansion Experiments. Three tests were conducted 
and some of the experimental parameters and results are given in 
Table 1. Early time response of the cylinders (less than 100 /ts) was 
monitored with high-speed photography and pulsed X-rays. Test 

2 Impulse loads from the electrically exploded mesh pattern without high 
explosives have been used for a recent application [11]. 
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Cu. MESH PATTERN

Cu. FOIL RETURN CONDUCTOR

PHENOLIC CYLINDER

If:jr~--DRY POWDERED PETN

H~t':L....--STEEL CYLINDER
AND GUARD
RINGS

•1

TO CAPACITOR BANK

Fig. 1· Experimental arrangement

:

'~__?O l~

:.
....--/10 II

Fig. 2 Mesh pallern; the small connecting black lines are the bridgewlres

Number 1 used a 119 Cordin framing· camera with a rate of 1.2 /-tS per
frame and Tests Numbers 2 and 3 used a 132 Cordin, 70 mm streaking
camera with a rate of 3 mm//-tS. Both cameras measured the early time
motion consisting of the initial acceleration phase and peak wall ve
locity. A streak record of the expanding diameter at the cylinder mi
dlength and a pulsed X-ray photograph of the expanded cYlinder and

. guard rings at t = 85/-ts for Test Number 3 are shown in Figs. 3 and
4. Plots of the early time response from the camera data for all tests
are presented in Fig. 5 along with several points ofdiscrete data from
the pulsed X-ray diagnostics. These curves were used to obtain the
peak wall velocities listed in Table 1. The maximum engineering strain
in this table was obtained from complete circumferential midlength
measurements.

18 / VOL. 47, MARCH 1980

Fig. 3 Streak record 01 the expanding diameter at the cylinder midlength
for Test Number 3

Fig. 4 Superimposed flash X-ray photographs of the test cylinder and guard
rings at f = 0 and 85 /-ts for Test Number 3

In order to obtain post-test diagnostics, square grids of 25.4 rom (1.0
in.) were drawn on the outer surfaces of the test cylinders. Five grids
were located along axes of the cylinders and at 90-deg angular inter
vals. A post-test photograph of the specimens and an undeformed
cylinder cut from the tube are shown in Fig. 6. This photograph in
dicates that expansion is maximum at the cylinder midlength and
perhaps the expansion would have been more uniform with longer
guard rings. A summary of the final engineering strains (change in
length divided by the original length) in the axial x, circumferential
0, and thickness z-directions are given in Table 2. In Table 2, x is
measured from the cylinder midlength and gives the center of the axial
location of the grid location. .

The incompressibility condition [12J commonly used in plasticity
analyses, namely,
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Table 1 

T e s t 
Number 

1 

2 

3 

PETN 
T h i c k n e s s 

3 . 1 5 mm 

3 . 5 1 mm 

4 . 2 1 mm 

PETN 
Mass 

0 . 1 1 6 k g 

0 . 1 3 1 kg 

0 . 1 7 7 k g 

Maximum 
W a l l V e l o c i t y 

0 . 1 7 mm/us 

0 . 2 0 mm/vs 

0 . 2 6 mm/us 

Maximum 
S t r a i n R a t e 

2 6 8 0 s " 1 

3150 s " 1 

1090 s " 1 

Maximum P i n a l • 
E n g i n e e r i n g S t r a i n 

0 . 1 1 

0.19 

0.80 

Table 2 

A x i a l L o c a t i o n 

x - 0 

X = 2 5 . 4 mm 
( 1 . 0 I n . ) 

x • - 2 5 . 1 mm 
( - 1 . 0 m . ; 

x = 5 0 . 8 mm 
( 2 . 0 I n . ) 

x = - 5 0 . 8 mm 
( - 2 . 0 I n . ) 

Tes t No. 1 

Angula r L o c a t i o n s 
0 TT/2 ¥ 3/2TT 

0.31 
0 . 1 2 

o a i 

0 . 3 3 
0 .12 

0 .14 

0 .36 

0 .12 

0 . 1 5 

0 . 3 1 

0 .12 

0 .12 

0 .36 

0 . 1 3 

0 .14 

0 .35 
0 . 1 1 

0 .17 

0 .35 
0 .12 

0 .16 

0 .38 

0 .12 

0 .18 

0 . 3 5 
0 .12 

0 .16 

0 .39 

0 . 1 3 

0 .18 

0 . 47 

0 .15 

0 .27 

0 .45 

0 . 1 1 

0 . 2 8 

0 .1b 

0 .15 

0 . 2 5 

0 . 4 1 

0 .14 

0 .24 

0 .4b 
0 .14 

0 . 2 4 

0 .40 

0 . 1 2 

0 . 2 2 

0 .42 

0 . 1 3 

0 . 2 1 

0 .46 

0 . 1 3 

0 .22 

0 . 4 1 

0 . 1 3 

0 .22 

0 .12 

0 . 1 3 

0 .20 

T e s t No. 2 

Angu la r L o c a t i o n s 
0 ir/2 TT 3/2ir 

0 . 4 5 

0 . 1 3 

0 .20 

0 .46 

0 . 1 3 

0 .19 

0 . 4 3 

0 .14 

0 .19 

0 .44 

0 .14 

0 .16 

0 .39 

0 .14 

0 . 1 1 

0 .52 
0 . 1 4 

0 .27 

0 . 5 1 

0 . 1 5 

0 .25 

o.4y 

0 . 1 3 

0 . 2 5 

0 .48 

0 .16 

0 .22 

0 . 4 3 

0 .14 

0 .20 

0 . 5 3 
0 .15 

0 .29 

0 .55 
0 .14 

0 .28 

0 . 5 1 
0 .14 

0 .28 

0 .49 

0 .15 

0 .24 

0 .14 

0 .14 

0 . 2 3 

0 .48 

0 . 1 3 

0 .25 

0 . 5 1 
0 .14 

0 .26 

0 .47 

0.14 

0 .24 

0 .49 

0 .16 

0 . 2 2 

0 .46 

0 . 1 5 

0 . 2 1 

Test No. 3 
Angular Locations 

0 ir/2 it 3/2* 
0.91 0.77 0.67 0.80 
0 . 2 1 0 .20 0 .17 0 .20 

0 .37 0 .32 0 .25 0.32 

0 .88 0 .78 0 .67 0 .80 

0 . 2 1 0 .19 0 .18 0 .20 

0 .36 0 .32 0 .25 0.32 

0 .87 O.76 0 .65 0 .77 

0 .22 0 .18 0 .16 0 .20 

0 .38 0 . 3 1 0 .24 0 . 3 1 

0 . 8 3 0 .72 0.64 0 .74 

0 . 2 3 0 . 2 1 0 .19 0 . 2 1 

0 .35 0 .30 0 . 2 3 0 .30 

O.83 0 .74 0 .62 0 . 7 1 

0 .22 0 . 2 1 0 .18 0 .20 

0 . 3 3 0 .30 0 .22 0 .29 

(l + ex)(l + etl)(l + ez) = 1 

(x + to + ez = 0 

( la) 

(16) 

where e; is engineering strain and ?;is effective or logarithmic strain, 
was checked for the grids at x = 0 and good agreement was observed. 
In particular, only two of the 12 grids for the three tests differed by 
more than 5 percent from the predictions of equation (1). 

D i s c u s s i o n 
A novel high explosive loading technique was applied to examine 

the expansion of stainless steel cylinders. The technique produces a 
simultaneous detonation of the explosive, rather than a sweeping load 
[9], and provides reasonably fundamental data on the expansion 
process. The cylinder of Test Number 3 was expanded to a maximum 
strain rate of 4090 s _ 1 and showed signs that fracture initiation had 
begun. This data point for the strain rate or wall velocity to cause 
incipient fracture is in agreement with previous data on thinner (0.51 
mm or 0.020 in.) cylindrical shells [13] expanded with magnetic 
pressure pulses. However, the thicker shells examined in this study 
expanded to ~80 percent circumferential engineering strain at in
cipient fracture; whereas, the thinner shells only expanded to ~25 
percent. 

In [9], aluminum shells were driven radially inward to examine the 
plastic flow buckling from impulse loads. These authors defined the 
parameter 

•Gx/i,) (2) 

and experimentally determined & as a function of the cylinder length 
to diameter ratio L/D. Results from this study on the expansion of 

20 

1 0 • 

TIME(^s) 

Fig. 5 Early time radial wall response at the cylinder midlength from high 
speed photography and pulsed X-ray data 

stainless steel cylinders with L/D = 1 are in close agreement with the 
data presented in Fig. 7 of [9]. It should also be pointed out that some 
of our colleagues at Sandia Laboratories [14] have observed that 
aluminum shells with large L/D ratios fail at lower circumferential 
fracture strains than rings or shells with small L/D ratios. Equations 
(1) and (2) can be combined to give 

h = -« z / ( l -k); k= -txlu 
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Fig. 6 Post-tesl cylinders compared with an undeformed cylinder

As pointed out in [9) k = 0 for plane strain or very long cylinders and
k = 1/2 for plane stress or rings. If one speculates that incipient
fracture occurs when the thickness strain of the specimen diminishes
to a critical value, circumferential ring strains would be twice as large
as circumferential strains for long cylinders at incipient fracture. The
authors hoped to perform additional tests at other LID ratios to ex
amine the foregoing hypothesis; however, the program ended before
we could complete this task.
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Creep of 2618 Aluminum Under 
Step Stress Changes Predicted by a 
Viscous-Viseoelastic Model 
Nonlinear constitutive equations are developed and used to predict from constant stress 
data the creep behavior of 2618 Aluminum at 200° C (392°F) for tension or torsion stresses 
under varying stress history including stepup, stepdown, and reloading stress changes. 
The strain in the constitutive equation employed includes the following components: lin
ear elastic, time-independent plastic, nonlinear time-dependent recoverable (viscoelas-
tic), nonlinear time-dependent nonrecoverable (viscous) positive, and nonlinear time-
dependent nonrecoverable (viscous) negative. The modified superposition principle, de
rived from the multiple integral representation, and strain-hardening theory were used 
to represent the recoverable and nonrecoverable components, respectively, of the time-
dependent strain in the constitutive equations. Excellent-to-fair agreement was obtained 
between the experimentally measured data and the predictions based on data from con
stant-stress tests using the constitutive equations as modified. 

Introduction 
The creep behavior of metals under changing stress—especially 

changes in state of combined stress and stress reversal—has received 
little experimental observation. Mathematical expressions employed, 
such as strain hardening or viscoelastic models, usually are unable 
to describe the detail of creep behavior under changes such as just 
mentioned. References to prior work in this area are given in [1]. 

In a previous paper [1] the authors described a viscous-viscoelastic 
model in which the strain was resolved into five components: elastic 
ee, time-independent plastic ep, positive nonrecoverable (viscous) «5»s, 
negative nonrecoverable (viscous) £neg, and recoverable (viscoelastic) 
e"e components. Prom creep and recovery experiments under com
bined tension and torsion, the time and stress dependence of these 
components were evaluated for constant stresses. Constitutive rela
tions for changes in stress state also were discussed in [1]. 

In the present paper, constitutive equations for changes in state 
of combined tension and torsion are developed and used to predict, 
from the relations determined from constant stress tests in [1], the 
creep behavior under abrupt stepup and stepdown changes in tension 
or torsion. The results are compared with experiments reported in 
[2] and with new experiments described in the following pages. Future 
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work will consider abrupt changes in the state of combined tension 
and torsion, stress reversal, relaxation and simultaneous creep, and 
relaxation. 

Material and Specimens 
An aluminum forging alloy 2618-T61 was employed in these ex

periments. Specimens were taken from the same lot of 2 V2-in-dia 
forged rod as used in [1] and the same lot as specimens D through H 
in [2]. Specimens were thin-walled tubes having outside diameter, wall 
thickness, and gage length of 1.00, 0.060, and 4.00 in., respectively. 
A more complete description of material and specimens is given in 
[1]. 

Experimental Apparatus and Procedure 
The combined tension and torsion creep machine used for these 

experiments was described in [3] and briefly in [1]. The temperature 
control and measurement employed was described in [1,2]. Stress was 
produced by applying dead weights at the end of levers. These weights 
were applied by hand at the start of a test by lowering them quickly 
but without shock. Strain was measured by a mechanical device [3] 
whose sensitivity was 1 X 10~6 for axial strain and 1.5 X 10~6 for tensor 
shear strain. The time of the start of the test was taken to be the in
stant at which the load was fully applied. In the present experiments 
changes in loading were made at intervals during the creep tests. The 
load changes were accomplished by hand in the same manner. Strain 
was recorded at the following intervals following a load change: every 
0.01 h to 0.05 h; every 0.02 h to 0.1 h\ every 0.05 h to 0.5 h; every 0.1 
h to 1.0 h; and every 0.2 h to 2.0 H. All experiments were performed 
at 200°C (392°F). 
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Constitutive Equations for Constant Stress 
In this paper as in the previous one [1] the strain was resolved into 

five components: ee, tp, e£os, ("ns,s, and e"e as defined in the Introduc
tion. The elastic strain ee was determined from the elastic constants 
at the test temperature. In [1] the elastic constants at 200°C (392°F) 
were determined indirectly from creep test data with the following 
results: 

E = 6.5X 104 MPa (9.43 X 106 psi), 

G = 2.46 X 104 MPa (3.57 X 106 psi), 

v = 0.321, 

where E, G, and v are the elastic modulus, shear modulus, and Pois-
son's ratio, respectively. 

As noted in [1] plastic strains tp were essentially zero in the creep 
tests performed and creep at constant stress was well represented by 
a power function of time 

Table 1 Constants for equations (2)-(5) 

-a i ca L i (1) 

where the time-independent strain e°j and the coefficient of the 
time-dependent strain terms efj were functions of stress and n was 
a constant. It was also shown in [1] that the nonrecoverable e"{t) and 
recoverable e"e(t) components of time-dependent strain could each 
be represented by a power function of time with the same exponent 
n. Also it was shown that the ratio R of the coefficient of the recov
erable time-dependent strains could be taken as a constant. Thus, 
under a constant stress, 

e1j= [1/(1+R)]etit'
1, 

elf = [R/(l + R)} efj t". 

(2) 

(3) 

In the previous work [1], the authors found the time-dependent 
strain of the material under single step loading and recovery to be well 
described by the following two equations for time-dependent pure 
axial strain eti and pure shear strain ejj-

' ei1(a)=FM = Ft(<T-a*) + FZ(cT-<j*)2 + Fi(<T-<T*)\ (4) 

eUr) = G(r) = G\(r ~ T*) + Gt(r - T*)3 . (5) 

The nonlinear relationship of a, and r in tn and e j j w a s derived from 
a third-order multiple integral representation [4,5]. In (4) and (5) a*, 
T* are the creep limits in pure tension and pure torsion, respectively, 
where a — a* or T — T* are zero for — a* ^ a < a* or —r* < r <.r*, 
respectively. The creep limit defines a stress below which creep ap
pears to be zero or very small.1 

Separating nonrecoverable t" and recoverable e"e strain compo
nents according to (2) and (3) and using (4) and (5) the time-depen
dent parts e" and tve for creep under constant tension a and torsion 
T can be represented by the following equations: 

R 
€fl(«) = 

€f2(t) = 
R 

1+R, 

1 + R 

F(a-<r*)tn, 

G(T - T*) t", 

F(a- a*)tn, 

G{r-T*)tn, 

(6) 

(7) 

(8) 

(9) 

where Ff, Gf, a*, T*, R, and n are the values determined from con
stant tension and torsion creep tests as reported earlier [1] and shown 
in Table 1. 

The rationale for separating the time-dependent strains into 

F = 6.084 x 10 , per Pa-hr (0.004195, % per ksi-hr ) 

F* = -7.431 x 10"20, per Pa2-hr" (-0.0003S33, % per ksl'-hr") 

F* . 7.596 x 10"28, per Pa3-hr" (0.0000249, % per ksi3-hrn) 

o* = 9.143 x 107, Pa (13.26, ksi) 

G* > 7.170 x lo'12, per Pa-hr" (0.004944, % per ksi-hr") 

G* = 2.703 x 10"28, per Pa3-hr" (0.00000886, % per ksi3-hr") 

T* = 4.571 x io , Pa (6.630, ksi) 

Note: n = 0.270 , R = 0.S5 . 

nonrecoverable strain e" and recoverable strain eve was based on the 
assumption that recovery resulted from recoverable strain accumu
lated during creep. Thus eve was determined from recovery data for 
the material in a set of constant stress creep and recovery tests as 
reported in [1]. e" was determined from creep tests by subtracting 
strains due to eve as described in [1]. Under time-dependent stress 
inputs, including step changes, other considerations are required in 
addition to (6)-(9) for predicting e" and tue. These considerations will 
be presented in the next section. 

Const i tut ive E q u a t i o n s for V a r i a b l e S t r e s s 
Creep behavior is dependent on the past history of stress (or strain). 

History dependence can be incorporated in the multiple integral 
representation [4,5] for a recoverable-type material. Unfortunately, 
the experimental difficulty of determining Fi, G,- to completely 
characterize a given material is almost insurmountable [5]. Further
more, as pointed out by Wang and Onat [6,7], higher-order terms 
beyond the third order of the multiple integral representation ap
peared to be required to describe creep of metals under multiple step 
loadings with sufficient accuracy. In the following, constitutive 
equations are developed to describe e" and tue under time-dependent 
stress history. 

Constitutive Equation for eve. In [5], it was shown that the 
multiple integral representation and various simplified forms can be 
used to describe creep behavior of recoverable type material under 
variable stress. Among the various simplified forms, the modified 
superposition principle (MSP) [5] has been shown to yield satisfactory 
results. Thus the modified superposition principle will be used here 
to describe the time-dependent recoverable strain eue. 

The modified superposition principle has the effect of reducing 
multiple integrals to single integrals. The modified superposition 
principle considers that following the first change in stress at time t i 
from <j\ to (72 the creep strain is the sum of: the strain which would 
have resulted had the original stress <n continued unchanged; plus 
the strain (negative) which would have resulted from an equal but 
opposite stress (—a{) applied at t i to an untested specimen; plus the 
strain which would have resulted from applying the new stress 02 at 
t\ to an untested specimen. Thus, if the strain at constant stress is 
given by 

i=f(<J,t) (10). 

the strain from N step changes in stress from <r,_i to at at time £; is 
given by 

1 Information obtained after completion of this work indicated that there 
was creep below the creep limit, but at a much lower rate than above the creep 
limit. 

e(t) = £ \f(<n,t - td - f(<n-i,t - ti-i)}. ( l l ) 
1=0 

The modified superposition principle for a continuously varying stress 
may be expressed as follows by considering the limiting case as the 
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steps in (11) tend to an infinite number of infinitesimal steps of 
stress, 

* ( * ) ' 
Jo 

a/k(E),* - fl . 
M£) 

<i(£) df. .(12) 

Applying (11) to the following series of three steps in tension a (or 
torsion T) stress: <TI(TI) for 0 < t < t\, <T2(T2) f° r h<t < t2, and 0-3(73) 

for J2 < t yields the following by inserting (6) and (7) in (11). The 
time-dependent recoverable strain e"e following the third step is given 

by . 

e°i\(t) = [-^-\\F(a1)[t"-(t.-h)n] 

e"i!(t) 

\1+RI 

+ F(o2){(t - t{)" - (t - t2)
n] 

+ F(a3)(t - t2)
n), t2<t, 

R 
IGirJlt" - (t - h)"] 

1+RI 

+ G(r2)[{t ~ ti)n - ( t - t2)
n] 

+ G(TS)(t - t 2 n . t2<t, 

(13) 

(14) 

where the stress functions F(ai) and G(T , ) represent F(oi — a*) and 
G(T; — T*) and are given in (4) and (5). 

For a series of m steps in stress the shearing strain e"|, for example, 
following the mth step, has the form: 

e\l(t) •• 
R 

\l + R, 
lG(n)[ t" - (t - tj)»] + . . . 

+ G(Tm_i)[(t - t m - 2 ) n - (t - t m - i ) n ] 

+ G ( r m ) ( t - t m - 1 ) » ] , t m - i < t . (15) 

Now, if ffi, ff2 (or TI, T2) are greater than cr* (or T*), respectively, 
and if 03 (or T3) in the third step is less than the stresses a2 (or T2), 
respectively, in the second step, then according to (13) [or (14)] both 
6n and e°| will show partial recovery if <r3 > a* (or T 3 > T*). Also, 
whenever 03 < cr* (or T3 =S r*) (including 0-3 = 73 = 0), then the time-
dependent strains will exhibit the same recovery as from complete 
unloading. The validity of this prediction will be explored later in this 
paper. 

Constitutive Equation for ev. Strain hardening is taken to be 
applicable to the nonrecoverable strain. The relations employed were 
derived as follows. Consider the axial strains as an example. The de
rivative of (8) yields the axial strain rate «n(£) 

e?i(0 F(a) tn-\ 
1 + fl 

Eliminating t between (8) and (16) yields 

€un(l + R) 

(16) 

eUl+R). 

from which 

e n 

nF(a) 

F{&) 

( e yi- ( i /») 1+R 

n / ( n - l ) 

1/re 

Multiplying both sides of (17) by dt and integrating yields 

1 

1 + R M o 

(17) 

(18) 

In (18) it has been assumed, in accordance with the usual strain-
hardening concept, that the same function F(a) applies for variable 
stress ^[crfi;)] as for constant stress F[a], 

For step changes in stress, such as the series of three steps given in 
the foregoing the axial strain in the third step may be found from (18) 
by employing the Dirac delta function as follows: 

eUt) 
1 + R 

{[F(a1)YHti)+[F(a2)V'"(h-h) 

+ [^(<T3)]
1/n(t - t2)]

n, t2 < t. (19) 

0.25 

0.24 
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0.0 2 

xo«t+* Data 
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" « < x 

0.5 1.0 
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2.0 

Fig. 1 Creep of 2618AL at 200°C under step loading. Where a theory is not 
shown it is the same as the (MVV) theory. Numbers indicate periods; T-, = 
69.0 MPa (10 ksi), T2 = 82.7 MPa (12 ksi), r3 = 96.5 MPa (14 ksi). 

Similarly the shearing strain e\2(t) may be found as follows: 

tUt) = ~ ^ \[G(ri)Yln(ti) + \G(T2)YHti - h) 

+ [G(r3)]1/"(t - t2))n, t2<t. (20) 

For a series of m steps in stress, the shearing strain e"2, for example, 
has the form 

eh(t) 
1 

•|[G(Tl)]^»(ti) + . . . 

(21) 

1+R 

+ [G(Tm-\)}1/n(tm-l ~ tm-2) 

+ {G{Tm)Y'n(t - t m - l ) " | , tm_! < t. 

whereF(<r,) and G ( T ; ) representF(ai — a*) and G ( T ; - T*) , see (4) 
and (5). 

Total Strain. The total strain following a series of steps or jumps 
in stress is found by adding to the elastic strain corresponding to the 
stresses existing at the time of interest the recoverable strain given 
by (13) or (15) and the nonrecoverable strain (19) or (21) for axial 
strain or shear strain, respectively. 

The aforementioned approach [the viscous-viscoelastic theory 
(VV)] was employed to calculate the creep behavior corresponding 
to several complex stress histories and compared with actual results 
in the following section. 

In addition, the strain-hardening theory alone (SH) as described 
by (21) was employed also to predict the total creep strain. In this case 
the coefficient 1/1 + R in (21) was replaced by unity and tve was taken 
to be zero. 

E x p e r i m e n t a l R e s u l t s and Compar i sons 
Using the material constants in (2)-(5) determined from constant 

stress creep and recovery tests as described in [1] and given in Table 
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o + » Data 
VV and MVV Theory 
SH Theory 

0.02 Bsti m i — ! — A 

0.5 1.0 

Time, h 
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Fig. 2 Creep of 2618AL at 200°C under complete unloading and reloading 
to a higher stress. Where a theory is not shown it is the same as the (MVV) 
theory. Numbers Indicate periods; o^ = 137.9 MPa (20 ksl), <J2 = 193.1 MPa 
(28ksi). 

1, creep resulting from stepup, stepdown, and recovery stress change 
experiments were predicted using the procedures just described. The 
results were then compared with corresponding experimental results 
as shown in Figs. 1-4. The experiments consisted of tension or torsion 
creep tests in which abrupt changes in load were made at intervals. 
Several types of load changes often were made in the same experi
ment. In the following the predictions for similar types of load changes 
are compared with experiments rather than discussing the results of 
each testing sequence. The predictions based on (13), (14), (19), and 
(20), the viscous-viscoelastic (W) theory, are shown as dot-dash lines. 
The short-dash lines represent the predictions based on strain 
hardening (SH) alone. The solid lines represent the predictions based 
on modifications of the viscous-viscoelastic (MVV) theory which are 
discussed in later paragraphs. In Fig. 1-4 omission of the dot-dash 
line or the dash line for any period indicates that the prediction based 
on the omitted theory is the same as that represented by the solid 
lines. 

Stepup Experiments. Stepup experiments are shown in Fig. 1-4. 
In Fig. 1 there is a sequence of two upward steps following the first 
period of creep. An upward step was preceded by a downward step 
to zero stress in Figs. 2 and 3. A small stress reduction preceded the 
stepup in Fig. 4. 

(VV) Theory. Except for a vertical displacement, the agreement 
between experiment and creep predicted by the (VV) theory is ex
cellent for the second period in Fig. 1. During the third period the 
actual creep rate was somewhat greater than predicted by the (VV) 
theory and there was more of a "primary"-type creep (greater rate 
of change of slope) than predicted. 

The third period in Fig. 2 (involving reloading to a higher stress 
than the first loading) shows excellent agreement between the pre
diction of the (VV) theory and the test data taken from [2]. The third 
and fourth periods in Fig. 3(a) consist of reloading to the same stress 
as the first after a period at zero stress and then a stepup in stress. 
Again there is excellent agreement between data and prediction of 
the (VV) theory. The experiment in Fig. 4 involves creep at one stress 
followed by a small reduction in stress and then a reapplication of the 
same stress. In the third period the character of the creep curve and 
that predicted by the (VV) theory differ in that the primary-type 
behavior predicted at the start of the period was not observed. Also, 
the rate of creep was greater than predicted. 

0.25 

0.24 

0.2 3 

0. I 9 -. 

0. 18 

0.02 -

0.01 

© + • A Data 

VV and MVV Theory 

SH Theory 

• I 

f.O 1.5 2.0 

Time, h 

Fig. 3(a) Creep of 261 SAL at 200°C under complete unloading, reloading, 
and stepup. Where a theory is not shown It Is the same as the (MVV) theory. 
Numbers Indicate periods, ff, = 119.5 MPa (17.33 ksl), a2 = 143.4 MPa (20.8 
ksi). 

* » * Ooto 

VV Theory 

MVV Theory 

SH Theory 

2 3 4 5 S 7 8 hr 

7.0 

Time , hours 

Fig. 3(b) Creep of 2618AL at 200°C under very small unloading steps. 
Numbers indicate periods; cfi = 119.5 MPa (17.33 ksl), <r2 = 143.4 MPa (20.8 
ksi), o-3 = 142.0 MPa (20.6 ksl), at = 140.7 MPa (20.4 ksi), <r5 = 139.3 MPa 
(20.2 ksl), o-6 = 137.9 MPa (20.0 ksl). 

(SH) Theory. For stepup experiments the predictions using the 
strain-hardening (SH) theory are about the same as that of the vis
cous-viscoelastic (VV) theory. For the first period of loading, both 
theories yielded identical results. In Fig. 1, periods 2 and 3, and Fig. 
4, period 3, the results from the strain-hardening (SH) theory are 
somewhat closer to the test data than the (VV) theory. In Fig. 2, period 
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' Fig. 4 Creep of 2618AL at 200°C with small unloading and reloading. 
Numbers Indicate periods;'a-, = 193.1 MPa (28 ksl), <r2 = 179.4 MPa (26 
ksl). 

3, and Fig. 3(a), period 4, the reverse is true. In Fig. 1 the primary-type 
behavior of the (VV) theory at the start of the period is not found in 
the (SH) theory. 

Recovery (Complete Unloading). Recovery following un
loading to zero stress is shown in Fig. 1-4. Agreement between the 
experimental data and the prediction of the (VV) theory is very good 
for all experiments except for small vertical shifts in Figs. 1 and 4. In 
all cases the shape is satisfactorily predicted. 

Similar results were also found for recovery following three tests 
having complex histories of combined tension and torsion (to be re
ported later). The recovery data in the second period of Figs. 2 and 
3 is not a prediction, however, as these data were used in [1] as input 
in obtaining the constants in Table 1. In Figs. 1 and 4 the recovery 

. shown in periods 6 and 4, respectively, followed a complicated history 
of changes in magnitude of stress. 

Predictions of recovery from the strain-hardening (SH) theory in 
all cases are incorrect. The strain-hardening theory predicts no re
covery upon complete unloading, although the experimental data in 
all cases show time-dependent recovery as predicted by the viscous-
viscoelastic (VV) theory. 

Stepdown Stress Change (Partial Unloading). Stepdown 
experiments involving partial unloading are shown in Fig. 1 at periods 
4 and 5, Fig. 3(6) at periods 5-8, and Fig. 4 at period 2. The changes 
in stress are about 17 percent in Fig. 1, 10 percent in Fig. 3, and 7 
percent in Fig. 4. In all of these cases the prediction based on the (VV) 
theory showed a recovery-type of behavior, that is, a negative slope 
of the creep curve with a gradually reducing rate. In Fig. 4. at period 
2 the gradually reducing rate was reversed in the middle of the period. 
However, in every instance the observed creep behavior showed no 
negative rate, but a nearly constant small positive rate. On the other 
hand, as just noted, complete unloading to zero stress resulted in a 
recovery-type curve (negative creep rate) in both the observed re
covery and the prediction from the (VV) theory. 

The prediction based on the (SH) theory for the stepdown exper
iments showed a small positive rate which was quite similar to the 
form of the observed creep behavior. In Fig. 3 periods 5-8 the pre
diction for both (VV) and (SH) theories were about the same. 

Discussion. The following features of the foregoing results were 
noted, (a) The strain-hardening (SH) theory did not predict the re
covery observed on complete removal of a stress component. (6) The 
creep rate following an increase in s.tress in all cases was somewhat 
greater than predicted. Since the contribution of the nonrecoverable 
component was about twice that of the recoverable component for the 
(VV) theory, it may be concluded that this is a defect of the work-
hardening approach used in computing the nonrecoverable compo
nent of strain, (c) In the third period of Fig. 1, the data showed more 
of a primary-type behavior than predicted. However, there is no such 
defect under similar circumstances in period 4 of Fig. 3(a). This may 
also be a defect of the work-hardening concept, (d) In the stepup tests 
and recovery at zero stress, there is no ambiguity as to how the creep 
limit enters into the calculation. However, on partial unloading the 
role of the creep limit is less clear. 

Modification of Constitutive Equations, (MVV) 
Theory 

Some of the features of the stepdown and recovery experiments not 
properly described by the (VV) or (SH) theories are better described 
by assuming that the behavior with regard to the creep limits is dif
ferent for the nonrecoverable strain e" than for the recoverable strain 
e"e as follows: 

(A) For the nonrecoverable strain component, the strain-hard
ening rule is still applicable. Upon reduction of stress, this strain rate 
£u continues at the reduced but increasing rate prescribed by the 
strain-hardening rule, (19)-(21) for example, until the current stress 
aa equals or is less than the creep limit a*. When <r„ ̂  a*, i" is zero 
as prescribed by (19)-(21). Upon reloading to a stress above the creep 
limit, the nonrecoverable strain rate e" resumes at the rate prescribed 
by the same equations as though there had been no interval tx for 
which aa =$ a*. 

(B) For the recoverable strain components fve, on partial un
loading, the recoverable strain rate e"e becomes and remains zero for 
all reductions of stress until the total change in stress from the highest 
stress (Tmax previously encountered to the current stress <x0 equals in 
magnitude the creep limit a*. That is, 

: 0 when (a„ • aa) «S a*. (22) 

Equation (22) can be considered as meaning that for a small unload
ing, the recoverable strain component is "frozen" until the stress 
differential is greater than a* before the recovery mechanism is ac
tivated. 

Besides the response that eue = 0 under the stress condition de
scribed by (22) for the (MVV) theory, there are two other possible 
responses for i"e under the stress condition given by (22): (a) e"e < 
0 (this has been covered by the (VV) theory) and (6) ive > 0 (for small 
partial unloading this is not admissible). 

(C) For large partial unloading, (<rmax ~ "a) > c*. the recovery 
mechanism becomes active and the recoverable strain component e"e 

may be computed as if the previous stress continued to cause creep 
and a reverse stress equal to (<7max - aa) was applied to the specimen. 
The recoverable strain may be computed by the modified superpo
sition principle except that the stress is replaced by the stress dif
ference minus a* when the stress is reduced. This satisfies the re
quirement of complete recoverability of e "e upon complete unloading 
for one step loading only. Further load changes may involve dif
ficulties because of nonlinearity. 

(D) Upon increasing the stress to Ob, (ob *= "a) following a period 
tx (a dead zone) for which (<Tmax — <ra) <a* and eve = 0 as discussed 
in (B), the recoverable strain component eue continues in accordance 
with the viscoelastic behavior (12) as though the period tx never oc
curred. Thus, in computing the behavior for situations described in 
(B) and (D), it is necessary to introduce a time shift in equations 
(13)-(15) to eliminate the appropriate period tx when t"e is "frozen." 
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Thus the new time t' subsequent to a period tx = (tb — ta), becomes 
t' = t — (tj, - ta), where t is the real time and ta, tb are the times when 
ffai and (Tb are applied. 

(E) Of course it is possible if not probable that the creep surface 
in stress space defining the creep limit changes size, shape, and po
sition as a result of plastic and creep strains. However, the nature of 
such changes, if any, is not known at present. 

The predictions of the modified viscous-viscoelastic (MVV) theory 
computed in accordance with A-D in the foregoing are shown as solid 
lines in Figs. 1-4. These predictions are in accord with the experi
mental data in Figs. 1, 2, 3(a), and 4, and are generally better repre
sentations'of the material behavior than either the (VV) or (SH) 
theories. 

However, the small stepdown experiments shown in Fig. 3(6) are 
best represented by the (VV) theory with the (SH) theory yielding 
the next best description of the data. The data in Fig. 3(6) are an 
approximation of stress relaxation in that the stress was held constant 
at each step until the strain had returned to its previous value before 
the stress was reduced again. Also the shape of the actual recovery 
curve resulting from complete unloading following a series of un
loading steps (Fig. 1 period 6) is better described by the (VV) than 
the (MVV) theory. A similar result was also observed in the recovery 
following complete unloading in a creep test under variable combined 
tension and torsion (to be reported later). 

All the partial stepdown tests shown in Figs. 1 and 4 are in the range 
where the change in stress is less than the magnitude of the creep limit 
(hence there was no contribution from tue) and the stress following 
the change was greater than the creep limit (hence i" would continue 
at a reduced rate). As shown for partial stepdown tests there was no 
"recovery"-type behavior and the creep rate was positive or ap
proaching zero, which was in accord with the (MVV) theory. Addi
tional stepdown tests in which the change in stress is greater than the 
magnitude of the creep limit are needed to explore further the role 
of the creep limit. 

Reproducibility 
Five creep tests-were performed at 172.4 MPa (25 ksi) tension and 

200° C. Four of these creep tests were followed by recovery at zero 
stress. All specimens were taken from the same lot of material. The 
results of all tests were similar. When (1) was fitted to the creep data 
with n = 0.270 the values of e?i and eJi were as follows for tests F,2 13, 
14,15, and 16,2 respectively: e°n—0.2627,0.2617, 0.2735, 0.2638, and 
0.2659; eJi—0.0401,0.0390,0.0365,0.0361, and 0.0416. The duration 
of these creep tests was 2, 0.1, 6, 0.8, and 0.1 h, respectively. These 
results suggest that the variability of the material and experimental 
errors were small. 

Aging 
The possibility that aging may have affected the results of ihe ex

periments was investigated further. A tension creep test was per
formed at 25 ksi stress at 200°C (392°F) after aging at the same 
temperature for 95 hr. The results showed a small increase in creep 
rate compared to the results of Tests Fl and 16 reported in [1] at the 
same stress but aged for 18 hr. Analysis of the data yielded the fol
lowing values of the constants in (1) for the test which was aged for 
95 hr.: For best fit n = 0.237, e° = 0.2668 percent, e+ = 0.0557 per-
cent/hr-"; for n = 0.270, e° = 0.2716, e+ = 0.0508. The creep rate i at 
1 hr is given by ne+. Making this computation for the three ages 
available yielded the following creep rates: Aged 18 hr, the average 
of Tests F l and 16 yielded e = 0.0085 percent/hr; aged 95 hr e = 0.0132 
percent/hr, aged 1103 hr, e = 0.230 percent/hr. Interpolating these 
values on the basis of either a log-log relation or linear time-log 
strain-rate relation yielded an increase of creep rate from 18-30 hr 
of about 7 percent for either interpolation. Thus, during the testing 
time of the experiments reported, the creep rate increased about V2 
percent per hr, which is considered negligible over the time span of 
the experiments. 

^Previously reported in [1]. 

Results and Conclusions 
Analysis of results of creep tests of 2618 Aluminum under a variety 

of changes in stress during creep in the nonlinear range show that a 
strain-hardening (SH) theory does not properly describe the behavior 
on unloading or reloading; but a viscous-viscoelastic theory with 
certain modifications (MVV) theory predicts most of the features of 
the observed creep behavior quite well. 

Among the conclusions are the following: 

1 The behavior may be represented by resolving the time-de
pendent strain into recoverable and nonrecoverable components 
having the same time-dependence. 

2 The material behaves as though there was a creep limit such that 
creep is very small or zero unless the stress is greater than a limiting 
value. 

3 On partial unloading the material behaves as though the non-
recoverable strain component e" continued to creep in accordance 
with strain hardening unless the stress became less than the creep 
limit; whereas the recoverable strain component tve remained con
stant unless the decrease in stress exceeded the magnitude of the creep 
limit. 

4 On reloading following an interval tx of partial unloading in
volving no further change in eue the component e"e resumed creep as 
though the interval tx did not exist. 

5 Very small reductions of stress are best represented by the 
viscous-viscoelastic (VV) theory, which is inconsistent with the be
havior under small stress reductions. 

6 Recovery on complete unloading following a history of step 
changes in stress is reasonably represented by the (VV) or (MVV) 
theories, but best represented by the (VV) theory. 
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Dynamic Plastic Response of 
Circular Plates With Transverse 
Shear and Rotatory Inertia 
The response of a simply supported circular plate made from a rigid perfectly plastic ma
terial and subjected to a uniformly distributed impulsive velocity is developed herein. 
Plastic yielding of the material is controlled by a yield criterion which retains the 
transverse shear force as well as bending moments and the influence of rotatory inertia 
is included in the governing equations. Various equations and numerical results are pre
sented which may be used to assess the importance of transverse shear effects and rotato
ry inertia for this particular problem. 

1 Introduction 
The rigid-plastic idealization of a ductile material considerably 

simplifies theoretical investigations into the dynamic response of 
structures subjected to large dynamic loads which cause inelastic 
behavior [1-4, etc.]. These analyses can give surprisingly accurate yet 
simple predictions for a wide range of practical problems. However, 
it turns out that transverse shear effects can exercise an important 
influence on the dynamic plastic behavior of various structural 
members as discussed in reference [4]. 

Two recent theoretical studies on beams loaded dynamically [5, 6] 
have examined the effect of rotatory inertia in the governing equations 
and the influence of transverse shear force as well as bending moment 
in the yield condition for a rigid perfectly plastic material. References 
[4-6] contain citations to earlier work which explore the influence of 
transverse shear effects on the dynamic plastic response of beams, 
while various yield criteria are discussed in reference [7]. 

The influence of transverse shear forces on the static plastic collapse 
of circular plates has been examined by several authors [8-12], but 
no papers appear to have been published for any dynamic loading 
case. Moreover, the influence of rotatory inertia on the dynamic 
plastic response of circular plates has not been examined, despite the 
fact that many authors have explored its effect for linear elastic plates 
[13, 14, etc.]. 

Reference [15] contains a review of many of the theoretical solutions 
on the dynamic response of circular plates which have been obtained 
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gland. 
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since the publication of reference [16]. However, the analyses were 
developed for plates made from rigid perfectly plastic materials which 
were controlled by a yield criterion relating the circumferential and 
radial bending moments, while the influence of transverse shear forces 
were disregarded. Wang [17] examined the behavior of a rigid perfectly 
plastic circular plate which was simply supported around the outer 
boundary and subjected to a uniformly distributed impulsive velocity 
Vu. It may be shown that the transverse shear force in this analysis 
is infinitely large at the supports immediately after the start of motion. 
It is the purpose of the work in Section 3 of this article to seek the 
behavior of Wang's problem when the circular plate is made from a 
rigid perfectly plastic material with a finite transverse shear strength. 
The simultaneous influence of transverse shear and rotatory inertia 
effects is then examined in Section 4. 

2 Basic Equations 
The equilibrium equations for the dynamic behavior of the element 

of an axisymmetrically loaded circular plate shown in Fig. 1 may be 
written in the form 

and 

dMr/dr+ (Mr - Ms)/r + Qr = 7 r d
2 f /d t 2 

dQr/dr + Qr/r = -p + ixd2w/dt2, 

(la) 

(lb) 

where Ir = pH3/12, u = pH, dw/dr = \p + 7, \p is the rotation of lines 
which were originally perpendicular to the initial midplane (z = 0) 
due to bending and 

y = dw/dr —' \p, /cr = dip/dr, no = ip/r (2a-c) 

are the transverse shear strain, radial curvature change, and cir
cumferential curvature change, respectively. 

The dynamic continuity condition across a discontinuity front, 
which travels from region 1 to region 2 with a velocity c in a continuum 
with a constant density p, may be written [18, 19] 

l<mj -pc[du[/dt], (3) 
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Fig. 1 Element of a circular plate 
Fig. 2 Yield surface 

where [X] - X% - Xh and when the particle velocity (dux/dt) in re
gion 1, which is normal to the discontinuity front, is negligible com
pared with c. The displacements a; act along the 2;-axes with x\ di
rected from region 1 to region 2 and normal to the discontinuity 
front. 

Now, %\ = r, X2 = r8, X3 = z, an = ar, 0-21 = 0, 0-31 = agz, "1 = -zip; 
U2 = 0, and 113 = w for the particular case of an axisymmetrically 
loaded circular plate with the variables defined in Fig. 1 and in the 
Nomenclature. Thus, if equation (3) with i = 1 is multiplied by 2 and 
integrated with respect to z then' 

[MA.~-drift, (4a) 

while equation (3) with i = 3 when integrated with respect to z 
gives 

[Qr] = -C/J.[W]. (46) 

The kinematic continuity condition associated with equation (3) 
is [18, 19] 

[dui/dt] = — c[dui/dxi], (5) 

which using the variables appropriate for an axisymmetrically loaded 
circular plate predicts 

and 

[$] = -c[i>t/dr] 

[w] = — c{dw/dr]. 

(6a)2 

(6b) 

3 Impulsive Loading of a Circular Plate With 
Transverse Shear 

It was remarked in the Introduction that the transverse shear force 
at the simply supported edge of the impulsively loaded circular plate 
examined in reference [17] is infinitely large at the start of motion. 
A theoretical analysis of the same problem is presented in this section 
but for a plate made from a rigid perfectly plastic material with a finite 
transverse shear strength. Plastic flow is controlled by the simplified 
yield criterion shown in Fig. 2 which was used by Sawczuk and Duszek 
[8] to examine the static loading of circular plates. Qo and Mo are the 
respective values of the transverse shear force per unit length and 
bending moment per unit length required for independent plastic 
yielding of the plate cross section. 

3.1 Class I Plates, 0 < v < %. The dimensionless transverse 
velocity profile for this class of plates subjected to a uniformly dis
tributed initial impulsive velocity VQ is 

2 This condition may also be obtained from the equivalent postulate [ 
which was used in references [5, 20] for beams. 

•Nomenclature. 
a = defined by equation (46a) 
mr, m0 = Mr/M0, Mg/M0 

p = lateral pressure 

q = Qr/Qo 
r, 0 = polar coordinates 
t = time 
w = transverse displacement 
w = dimensionless transverse displacement 

(equation (10g)) 
2 = coordinate through plate thickness 

(Fig. 1) 
H = plate thickness 
/ = dimensionless rotatory inertia defined by 

equation (466) 

Ir = f)Hs/12 

Mr, Me = radial and circumferential bend
ing moments per unit length defined in 
Fig. l 

Mo = magnitude of bending moment per unit 
length required for plastic flow of cross 
section 

Qr = transverse shear force per unit length 
defined in Fig. 1 

Qo = magnitude of Qr required for plastic 
flow of cross section 

R = outside radius of plate 
RB, RS = bending and shear energies divided 

by the initial kinetic energy 
T = dimensionless time defined by equation 

(10/) 
Vo = initial impulsive velocity 

W = dimensionless transverse displacement 
defined by equation (10g) 

a = r/R 
P = dimensionless radius of an axisymmetric 

interface 
7 = transverse shear strain 
Kr, Kg = radial and circumferential curvature 

changes 
H = pH 
v = Q0R/2Mo 
p = density of material 
ffo = uniaxial yield stress 
\p = rotation of midplane due to bending 
[X] = X2 - Xx 
(') = d( )/dt or d( )/dT. 
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Fig. 3 (a) Impulsively loaded circular plate; (b) Velocity profile for Class 
I plates; (c) Velocity profile for the first phase of motion for Class II Plates; 
(d) Velocity profile for the second phase of motion for Class II plates 

W for 0 < a < 1, (7) 

which gives a circumferential shear hinge at the supports as indicated 
in Fig. 3(b). Thus, if Ms is assumed constant in the rigid region 0 < 
a < 1, then equations (la, 6) with Ir = 0, and p = 0, and equation (7) 
give 

W=-v/3, q(a) = -a, (8a, b) 

OTr(a) = - 2 » ( 1 - a 2 ) /3 , m,(a) = -2v/2, (9a, 6) 

when satisfying g(l) = —1, and m r ( l ) = 0, where 

a-=r/R, i> = QoR/2M0, q = Qr/Qo, mr = Mr/MQ, 

me = Mg/M0, T = UM0t/nVoR2, 

W = 12M0 Win V0
2R 2,W = WIV0. (10a-h) 

Now, equation (8a) predicts 

W(T) = T- vT2/6 (11) 

since W(0) = 1 and W(0) = 0. Thus motion ceases when 

Ti = 3/i/ (12)' 

and the associated maximum permanent transverse displacement 
is 

Wf = 3/2v. (13) 

This transverse displacement is manifested as a shear slide at the 
supports which must not therefore become too large to avoid failure 
of the plate. A suitable failure criterion for engineering purposes was 

developed in reference [21] for beams and may be written for the 
present case in the form 

Wf < kH, (14) 

where 0 < k < 1 and H is the plate thickness. 
The generalized stress fields given by equations (86) and (9) are 

statically admissible provided 0 < v < %. 
3.2 Class II Plates, % < v < 2. If v > % then equation (9) shows 

that mo violates the yield condition throughout a plate and mr pene
trates the yield surface in a central region. Thus the first stage of 
motion for the present case is governed by the velocity profile sketched 
in Fig. 3(c) which gives plastic bending throughout a plate with a 
stationary shear hinge at the supports. This phase of motion is com
pleted when shear sliding ceases at the supports and is followed by 
a final stage of motion with the velocity profile illustrated in Fig. 
3(d). 

3.2.1 First Phase of Motion, 0 < T < Ti. The transverse velocity 
profile in Fig. 3(c) is 

w(r, t) = W(t) + \Wi(t) - W(t))r/R, (15) 

(17a, b) 

(18a, b) 

which predicts kr = 0 and kg < 0 if W > W\ according to equations (2) 
with y = 0 in the region 0 < a < 1. Thus the normality rule of plas
ticity requires 

m0 = - 1 , - 1 < mr < 0, - 1 < q < 1. (16a-c) 

Equations (15), (16a), and (la, b) wi th / r = p = 0 give 

# 1 = 1 -1 / , W = v - 2, 

q(a) = a{2(3 - 2v)a + 3(» - 2)}lv, 

and 

mr(a) = - 1 - (3 - 2i/)a3 - 2 0 - 2)a2, 

since g(l) = —1, mr(\) = 0, and mr(0) = —1. Thus 

Wi = T + (1 - i>)T2/2, W = T + 0 - 2 ) T 2 / 2 (19a, b) 

because W(0) = 1, Wi(0) = 1, W(0) = 0, and Wi(0) = 0. This phase 
of motion terminates at 

Tx = I /O - 1) (20) 

when W\ = 0, and the associated shear sliding at the supports is 

WiCTi) = 1/|20 - D). (21) 

The total energy dissipated due to shearing deformations is 

Rs = v / | 30 - Dl (22) 

when nondimensionalised with respect to the initial kinetic energy 
inrR2V0

2l2. 
It is straightforward to show that the generalized stress fields (18) 

are statically admissible provided % < v < 2. 
3.2.2 Second Phase of Motion, Ti < T < Tf. The equilibrium 

equations (la, b) together with equation (15) with W\ - 0 and equa
tions (16a-c) predict 

and 

W=-l, q(a) = - a ( 3 - 2a)lv, 

mr(a) = 2a2 - ots — 1 

(23a, 6) 

(23c) 

since ror(l) = 0, and mr(0) - —1. Now, integrating equation (23a) and 
making the displacements and velocities continuous at T\ with 
equations (19) gives 

w(a, T) = (2 - 772)(1 - a)T + (a - V2)/0 - 1). (24) 

Finally, motion ceases at 

Tf=2 (25) 

when W = 0 and 
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w(a, Tf) = (4J> - 5)/|2(» - 1)1 + (3 - 2i>)a/(i' - D- (26) 

The ratio of the energy dissipated in bending to that dissipated in 
shear is 

RB/RS = 2 - 3/v. (27) 

3.3 Class III Plates, v> 2. It is evident from equation (186) that 
d2mr (0, T)/dai < 0 when v > 2, which leads to a yield violation at the 
plate center. These yield violations are avoided when a plate responds 
with the three phases of motion indicated in Pig. 4. 

3.3.1 First Phase of Motion, 0 < T < Tr. A stationary hinge 
circle forms at a dimensionless radius jSi((Si = ri/R) and transverse 
shear sliding develops at the plate supports as shown in Fig. 4(6). This 
transverse velocity field may be written 

w(a,T) = W(T) for 0 < a < ft, (28a) 

and 

Ma, T) = %(T)(a - ft)/U - ft) 
+ W(T)(1 - a)/(l - ft), ft < a < 1. (286) 

Equations (2) with y = 0 and the flow rule of plasticity again give 
equations (16), which together with the equilibrium equations (1), 
equations (28), and q(l) = - 1 , m r(l) = 0, m r(ft) = - 1 , q(P) = 0, [<?(ft, 
T)] = [m r(f t ,T)] = 0 predict 

# = o, # i = -{(1 - ft)2(l + ft)!-1. (29a. b) 

9(a) = 0, m0(a) = m r (a) = - 1 for 0 < a < ft, (30a-c) 

while 

q(a) = -(a - ft)2(2a + ft)/(a(l - ft)2(2 + ft)), me(a) = - 1 , 

and 

mr(a) = v(a - ft)3(a + ft)/|a(l - ft)2(2 + ft)) - 1 

when 

ft < a < 1, (31a-c) 

where 

ft = |(4K2 - 8K + 1)1/2 - l)/2i». (32) 

Equations (28)_and (29) with the initial conditions W(0) = Wi(0) 
= 1, and W(0) = Wi(0) = 0 give 

W(a, T) = T, 0 < a < ft, (33a) 

and 

W(a, T) = T- vT\a - ft)/|2(2 + ft)(l - ft)2|, ft < a < 1. 

(336) 

This phase of motion terminates when Wi = 0 which occurs at 

Ti = (1 + ft)(l - ft)2 (34) 

and the associated dimensionless transverse displacements are 

Ma, TJ = (1 + ft)(l - ft)2, 0 < a < ft (35a) 

and 

u7(a, Ti) = (1 - ft2)(l - ft/2 - a/2), ft < a < 1, (356) 

while the corresponding dimensionless energy dissipated due to 
transverse shear deformations is 

i ? s = ( 2 + ft)(l-ft)/3. (36) 

3.3.2 Second Phase of Motion, Ti^T^T^ No transverse shear 
deformations occur during this phase of motion. The transverse ve
locity profile illustrated in Fig. 4(c) with a circumferential hinge 
traveling at speed $ is given by equations (28) with W\ = 0 and ft 
replaced by /3(T) and is similar to that used by Wang [17] during the 
first; phase of motion of the bending only solution for a simply sup-

i 

(a) 

(d) 
Fig. 4 (a) Impulsively loaded circular plate with v > 2; (b-d) are the di
mensionless velocity profiles for the first, second, and third phases of motion 
for Class III plates 

ported circular plate loaded impulsively. Thus, following a theoretical 
procedure similar to Wang [17] and matching the velocity and dis
placement fields at T = T\ with equations (33), shows that this phase 
of motion ends at 

T2 = l (37) 

when /3 = 0. The associated transverse displacements are 

W(a> T2) = 1 - «2/2 - a3 /2, 0 < a < f t (38a) 

and 

w(a, T2) = (1 - ft2)(2 - ft - a)/2 
+ ft(l + 3ft/2)(l - a), ft<a<l. (386) 

It may be shown that the transverse shear force q(a, T) and the 
other generalized stresses are statically admissible. 

3.3.3 Third Phase of Motion, T2<T< Tf. Again no transverse 
shear deformations develop during this final phase of motion which 
is governed by the transverse displacement profile in Fig. 4(d). Thus 
the theoretical procedure for this phase of motion is similar to that 
employed by Wang [17] for the final phase of motion in the bending 
only case and is also similar to the second phase of motion in Section 
3.2.2 for Class II plates. 

It may be shown that motion finally ceases when 

Tf = 2, (39) 

and the final deflection profile is 

30 / VOL. 47, MARCH 1980 Transactions of the ASME 

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



o(a, Tf) = (1 - a)(a2 + 2a + 3)/2 for 0 < a < ft, (40a) 

and 

w(a, Tf) = (1 - a ) ( l + 2ft + 3ft2)/2 + (1 - ft2)(2 - ft - a)/2 

when 

ft < a < 1. (40b) 

The ratio of energy dissipated in bending to that dissipated in shear 

U l l l l l l l l l l l l l l 

(a) 

RBIRS = (1 + ft + ft2)/(2 - ft - ft2), 

where ft is given by equation (32). 

(41) 

4 Impul s ive Load ing of a C ircu lar P l a t e W i t h 
T r a n s v e r s e S h e a r and R o t a t o r y I n e r t i a 

4.1 Plates With 0 < v < %. It is evident that the transverse ve
locity field illustrated in Fig. 3(6) and used to describe the behavior 
of the Class I simply supported circular plates in Section 3.1 does not 
involve any rotation of the plate elements. Thus \p = 0 and the rotatory 
inertia term in equation (la) is zero even when Ir 4= 0. The theoretical 
analysis in Section 3.1 therefore remains valid for the case when 
transverse shear and rotatory inertia effects are retained in the basic 
equations. 

4.2 Plates With v > %. It may be shown that the transverse 
velocity fields illustrated in Figs. 3(c, d) and 4 do not give statically 
admissible solutions when the influence of rotatory inertia is retained 
in equation ( la) . For example, it may be shown that the solution of 
the equilibrium equations (la, b) with the velocity field illustrated 
in Fig. 3(c) gives a yield violation near the plate center since mr=—l 
and dmr/da < 1 at a = 0. It turns out that in order to satisfy the ki
nematic and static requirements, plastic hinges do not develop in a 
plate, a circumstance which was also found in reference [5] for 
beams. 

If Me = Mr = -M0 and \Qr\ < Qo throughout a plastic zone in a 
circular plate with Ir 41 0, then equations (la, b) give 

d2w/dr2 + r 1d«)/dr — nw/Ir = 0. (42) 

If w (r, t) is written using the separation of variables, then the spatial 
dependence of w is governed by a modified Bessel equation of zero 
order. Thus 

w = C1(i)Jo|(/i//r)1/2r| (43) 

when disregarding the usual Ko\(jj./Ir)
1/2r\ term to avoid a singularity 

at r = 0 and where C\(t) is an arbitrary function of time, and Io\(fi/ 
Ir)

1/2r\ is a modified Bessel function of the first kind of order zero. 
Equation (43) therefore leads to a velocity field in the plastic zone 

w = C(t)h\(v/Ir)
mr) + D(r), (44) 

where C(t) and D{r) are found from the initial conditions and the 
boundary conditions at the interface. 

The response of a simply supported circular plate which is subjected 
to a uniformly distributed impulsive velocity Vn consists of the two 
phases of motion illustrated in Fig. 5. 

4.2.1 First Phase of Motion, 0 < T < T\. The transverse velocity 
profile illustrated in Fig. 5(b), which has a central zone governed by 
equation (44) with a stationary axisymmetric interface at a = ft and 
a stationary shear hinge at the supports (a = 1), may be written in the 
form 

Ma, T) = l + \W(T) - l]I0(aot)/Io(aPi), 0 < a < ft, (45a) 

and 

w(a,T) = W i ( T ) ( a - f t ) / ( l - f t ) 

+ W(T)(1 - a ) / ( l ft), ft < a < 1, (456) 

: t>) 

Fig. 5 (a) Impulsively loaded circular plate with v > % and /, + 0; (i>, c), 
Velocity profiles for the first and second phases of motion 

and where 

6/1 and I = 6Ir//xR2 (46a, b) 

Equations (45) give [MPu T)] = 0 and dS7(0, T)/dct = 0. Furthermore, 
X = 0, kr < 0 and k0 < 0 in the central plastic zone (0 < a < ft) with 
W < 1 which is consistent with the normality requirements of plas
ticity associated with the portion mg(a, T) = mr(a, T) = —1 and \q(ct, 
T) | < 1 of the yield surface in Fig. 2, while in the outer region ft < a 
< 1, 7 = 0, kr = 0, and ko ^ 0 if w\ < W and therefore mo(a, T) = - 1 , 
- 1 < mr(a, T) < 0, and \q(a, T)\ < 1. 

Now, it may be shown when substituting the foregoing generalized 
stresses and velocity fields (45) into the equilibrium equations 
(la, b) and when insuring q(0, T) = 0, g( l , T) = - 1 , m r( l , T) = 0, 
K ( f t , T)] = 0, and [dm r(ft, T)/da] = 03 that 

and 

q(a) = [^&Ilv)Wh(aa)/I0(aP1), 

mr(a) = m„(a) = - 1 , for 0 < a < ft, (47a-c)4 

UT(0, 0) = 1 and W(0) = 1, 

3 It may be shown when using equation (la) for the present case with mo = —I 
for 0 < a < 1 with /?i time-independent that [q(j3i, T)] = 0 may be replaced by 
the requirement [dmr(/?i, T)/da] = 0 provided [d2iA(/3i, T)/dT2} = 0. 

4 /o( ) and I\( ) are modified Bessel functions of the first kind of orders zero 
and one, respectively. 
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9(a) = (1 - a)|(3ft + 3aft - 2a2 - 2a - 2)Wi 

- (1 - a)(l + 2a)#|/{i»a(l - 0i)) - 1/a, 

mr(a) = - (1 - a)2|(3 - 4ft - 2a(31 + 2a + a2)Wj 

+ (1 - a2)W)/(a(l - ft)! - 7(1 - a2)(Wi - # ) / (a ( l - ft)) 

- (1 - a)(2v - l)/a, 

m0(a) = - 1 

when 

0! < a < 1, (48o-c) 

where 

W = - [(1 - 0i)2(2 + ft - v(l - ft2)) + /(ft + i.(l - ft)2)]/«, (49a) 

Wi = [(1 - ft)2(l + 2ft) - xU - ft)3(l + 3ft) 
- /(ft + i.(l - ft)2)]/12, (496) 

and 

a = (1 - j3i)2l(l ~ ft)2(l + 4ft + ft2) + /(3 + 2ft + ft2)). (49c) 

Thus equations (49) with Wi(0) = W(0) = 1 predict 

W = 1 - [(1 - ft)2|2 + ft - j»(l - ft2)) + /jft + j.(l - ft)2)]T/fi 

(50a) 

and 

Wi = 1 - [i.(l - ft)3(l + 3ft) - (1 - ft)2(l + 2ft) 

+ /{ft + »(1 - ft)2)]T/fl, (506) 

so that the first stage of motion is completed at 

Ti = fi[/|ft + *(1 - ft)2! - (1 - ft)2!l + 2ft 
- 1.(1 - ft)(l + 3ft)|]-i (51) 

when W\ = 0, and the associated dimensionless transverse displace
ment at the supports is 

Wi(T1) = i2[2/jft + V ( l - f t ) 2 ) 
- 2(1 - ft)2|l + 2ft - v(l - ft)(l + 3ft))]-1. (52) 

It was remarkedpreviously that the flow rule of plasticity requires 
Wi — W £0 and W < 1 which leads to the restriction 

3(1 + ft)/|2(l - ft)(l + 2ft)) < v < |(1 - ft)2 

X (2 + ft) + /ftj/{(l - ft)2(l - ft2 - /)). (53) 

The location of the stationary interface between the two plastic 
zones at a = ft is obtained from the requirement that 

[dV(ft, T)/dt2] = 0," or /!(aft)//0(aft) = a-1 

X (1 - 00(21.(1 - ft)(l + 2ft) - 3(1 + ft))[(l - ft)2 

X (2 + ft - i.(l - ft2)) + /(ft + i.(l - ft)2)]"1. (54) 

This equation may be evaluated numerically to predict the position 
of the interface ft as shown in Fig. 6. It turns out that the inequality 
(53) is satisfied up to at least v = 50 when the calculations were ter
minated. 

i.2.2 Second Phase of Motion, Tr < T < Tf. The transverse 
velocity is zero at the supports and the dimensionless radius 0 of the 
central plastic zone decreases with time during the second phase of 
motion which is governed by the transverse velocity profile in Pig. 5(c) 
which is described by equations (45) with Wi = 0 and ft replaced by 
0(T). This velocity profile gives [u7(ft T)] = 0 and therefore [q(ft T)] 
= 0 is required according to equation (46). Furthermore, if [mr(ft T)] 
= 0, then from equation (4a), [^(0, T)] = 0, which leads to the ex
pression 

l.Or 

0.8 

0.6 

0:4-

0.2 

Fig. 6 Variation of ft with v, where / = 1/2K2 for a circular plate with a solid 
cross section; — equation (32), - - - equation (54) 

W = a(l- 0)/1(a0)/f/o(a0) + a(X - ft/i(a/?)). (55) 

Thus the equilibrium equations (la, 6) with g(0, T) = 0, mr(0, T) = 
m0(0, T), [mr(|9, T)] = 0, Mft T)] = 0,and mr(l, T) = Ogives 

q(a, T) = (V6//VK1 - P)[h(aoL)/Io(aP)}WdT){W/(l - /?)(, 

mr(a, T) = me(a, T) = - 1 for 0 < a < ft (56a-c) 

and 

q (a, T) = |4(«3 - /33) - 6(a2 - ft*) - 126/3(1 - ft)[2wx(l - ft 

X ((1 - ft2(l + 3ft 

+ / ( l + ft + 126/3(1 - ft)]"1, 

mr(a, T) = (1 - a)(ftl + /3 - /32)'- a(l + a - a2) - I(a - ft! 
X (a(l - ft3(l + 3ft 

+ a/(l - (32) + 12a6/3(l - ft2)"1 - 0(1 - a)/(a(l - 0)), 

and 

me(oi, T) = - 1 when 0 < a < 1, (57a-c) 

where 

6 = /1(a0)/(a/o(a0)), (58a) 

and 

(d/dT)|W/(l - ft) = - |(1 - 0)3(1 + 3ft + 7(1 - 02) 
+ 1260(1 - 0)2)"1. (586) 

Equations (55) and (586) may be solved to give the velocity of 
propagation (0) of the interface at a = 0 

0 = -0(1 + a26(l - 0))2[a26(l + c0)|(l - 0)3(l + 30) 
+ 1(1 - 02) + 1260(1 - 0)2 | ] - \ (59a) 

where 

c = a/2(a0)//!(a0), (596) 

and /2< ) is a modified Bessel function of the first kind of order 
two. 

It is evident from equation (55) that when 0 = 0 and T — Tf then 
W = 0 and the motion of the plate ceases. The duration of the second 
phase of motion may be obtained numerically from the expression 

Tf-T1= C° d0/0 
• / f l (T i ) 

(60) 

6 It was remarked in a previous footnote that the requirement MA, T)] = 0 
may be replaced by [dmAPi, T)/da] = 0 provided [d^ft, T)/i>T2] = 0. 

according to equation (59a), where 0(Ti) is calculated from equation 
(54). It turns out that a numerical evaluation of equation (60) up to 
v = 25 when the calculations were terminated gives a total duration 
of response Tf = 2. 
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BENDING ONLY CASE [|7] 

I = 0 

Fig. 7 Variation of permanent transverse displacements at plate center (Wf) 
and plate supports (W,) 

wfa.T,) 

0.2 0.4 0.6 0.8 

a 

_ ^ " = 00 [17] 

Fig. 8 Permanent deformed profiles of circular plates (0 < a < 1) 

The maximum permanent transverse displacement at a = 0 when 
T = Tf may be evaluated numerically from the expression 

(61a) 

(616) 

w(0, T,) = w(0, T{) + P 57(0, T)d^/ft 
JftTi) 

where 

MO, T) = 1 + (W - l)//o(a/8) 

from equation (45a) (with ft replaced by ftT")), and 

mo, Ti) = Ti - [(1 - ft)2(2 + ft - , (1 - ft*)) 

+ /(f t + »(1 - ft)2!]r12/(2fl/0(aft)) (61c) 

according to the integral of equation (45a) with a = 0 and where T\ 
is given by equation (51). 

5 D i s c u s s i o n 
It may be shown that the theoretical analyses presented in Sections 

3 and 4 are kinematically and statically admissible and therefore exact 
within the setting of classical plasticity for the yield surface in Fig. 
2. The amount of shear sliding at the plate supports in these analyses 
should satisfy the criterion represented by equation (14) as discussed 
in reference [21]. In addition, the material is assumed to be strain-rate 
insensitive, and in order to remain consistent with an infinitesimal 
theory the difference between the maximum transverse displacements 
at the plate center and the" transverse shear sliding at the supports 
should be less than the plate thickness, approximately. 

The theoretical analysis in Section 3 with 1 = 0 and a finite 
transverse shear strength (y < <*>) is compared in Figs. 7 and 8 with 
the theoretical predictions of Wang [17] which retains neither 
transverse shear (v = •*>) nor rotatory inertia (/ = 0) effects. Inciden
tally, the various equations in Section 3 with v —- °° reduce to the 
corresponding theoretical predictions in reference [17]. It is evident 
from Figs. 7 and 8 that transverse shear effects play an important role 
when v is small, as expected. However, the results in Figs. 7 and 8 with 
1 = 0 and v > 5, approximately, are similar to those of Wang, although 
Fig. 9 reveals that a significant portion of the initial kinetic energy 
is dissipated through shearing deformations at the supports for larger 
values of v. The theoretical solution in reference [8] for a simply 
supported circular plate subjected to a uniformly distributed static 
pressure indicates that transverse shear effects do not influence the 
static collapse behavior for the yield surface in Fig. 2 when v > 3/2. 
Thus the present study demonstrates that transverse shear effects 
are more important for the dynamic case than for the corresponding 

1.00 

0 . 7 5 -

0.50 

0 . 2 5 -

-

-

\\ 

\ 
\\ 
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\ \ 

R B 
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I 

^ ^ 

0 

1 

T . T f 

/ Zv2-

1 

Fig. 9 Proportion of initial kinetic energy absorbed due to shearing (Rs) and 
bending (RB) deformations 

static problem as also found in reference [20] for beams and discussed 
in references [4, 5]. It should be noted that v = R/H for the particular 
case of a circular plate having a solid homogeneous cross section with 
Qo = (T0H/2 and M 0 = <r0H

2/4. 
On the other hand, if a circular plate is constructed with a sandwich 

cross section, then an inner core of thickness h and a shear yield stress 
TO supports a maximum transverse shear force Qo = Toh (per unit 
length), while thin exterior sheets of thickness t can independently 
carry a maximum bending moment M0 = oot(h + t), where <ro is the 
corresponding tensile yield stress. In this circumstance v — QoR/2Mo 
gives 

R TQ I 
H o-o/2J 

h/H 

U - (h/H)2 

when H = h + It. Thus a sandwich plate with 2R/H = 15, <XO/2TO = 
8, and h/H = 0.735 (e.g., a 0.5-in-thick core with 0.1-in. sheets gives 
h/H = 0.714) gives v = 1.5 for which transverse shear effects are very 
important according to the results in Fig. 7. 

It is evident from Fig. 7 that the inclusion of rotatory inertia in the 
governing equations and the retention of transverse shear as well as 
bending effects in the yield criterion leads to an increase in the per
manent transverse shear sliding at the plate supports and a decrease 
in the maximum final transverse displacement which occurs at the 
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p la te center . However , t h e inclusion of I gives rise to respect ive 

changes in the se q u a n t i t i e s of approx ima te ly 11.5 and 14.2 pe rcen t 

a t mos t . T h u s t h e s impler theore t ica l analysis in Sect ion 3 wi th I = 

0 would p robab ly suffice for m o s t p rac t ica l purposes . If grea ter ac

curacy is requ i red , t h e n it is only necessary to include / for circular 

p la tes wi th 1.5 < v < 4, approx ima te ly . 

T h e dura t ion of response Tf = 3/v is independent of rota tory inertia 

effects when v < 3/2. F u r t h e r m o r e , Tf = 2 is i n d e p e n d e n t of bo th I 

a n d v when v > 3/2. 

I t t u r n s ou t t h a t t h e theoret ical analysis for t h e impulsively loaded 

s imply s u p p o r t e d circular p l a t e p r e s e n t e d here in h a s m a n y fea tures 

in c o m m o n wi th t h e cor responding theore t ica l solut ion for an im

pulsively loaded s imply s u p p o r t e d b e a m which was discussed in ref

erences [5, 22]. A b e a m wi th 7 = 0 h a s th ree classes of mot ion v < 1, 

1 < v < 1.5, and v > 1.5 and t ransverse velocity profiles associated with 

each of these regions are s imilar t o those in Figs. 3 a n d 4 he re for t h e 

t h r e e classes of p la t e behavior examined in Sect ion 3. T w o classes of 

behavior occur for impuls ively loaded s imply s u p p o r t e d b e a m s wi th 

v < 1 a n d v > 1 and I + 0 [5]. T h e cor responding t ransverse velocity 

profiles a re s imilar t o those found in Sect ion 4 here . 

6 Conc lus ions 
A theoret ical solution for an impulsively loaded circular plate made 

from a rigid perfect ly p las t ic ma te r i a l has been developed when t h e 

t ransverse shear force as well as bend ing m o m e n t s are re ta ined in the 

yield condi t ion and the influence of ro ta tory iner t ia is included in t h e 

governing equations. Transverse shear effects are impor tan t for small 

values oiv(QaR/2Mo), as expected, while ro ta tory inert ia can further 

decrease t h e m a x i m u m p e r m a n e n t t r ansverse d i sp l acemen t u p t o 

a b o u t 14 p e r c e n t when v > 1.5. T h u s t h e s imple theore t ica l analysis 

w i th / = 0 in Sect ion 3 should suffice for m o s t prac t ica l purposes , 

excep t poss ibly for circular p la tes wi th 1.5 < v < 4, approx imate ly , 

w h e n grea te r accuracy is requi red . 
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Optimal Cool-Down in Linear 
Viscoelasticity 
An optimal temperature path is derived for a thin uiscoelastic plate which is cooled from 
a stress-free state against geometric constraints. The optimal path, which minimizes the 
final residual stress due to cool down, is shown to possess discontinuities at the initial and 
final times and to be smooth and continuous during all intermediate times. An iterative 
convergent scheme is provided for a wide class of linear uiscoelastic responses and typical 
paths are determined for two specific cases. In addition, a time-temperature path which 
maintains constant stress values during cool-down is derived. The problem is motivated 
by the cooling process of composite materials. 

1 I n t r o d u c t i o n 
This paper presents an analytical scheme for the optimal temper

ature path which minimizes residual thermal stresses in linear, 
thermorheologically simple, viscoelastic thin plates. The plates are 
assumed to be stress-free at an elevated temperature and are cooled 
down against geometric constraints to a prerequisite temperature level 
during a prescribed time-span. The optimal path is shown to possess 
jump discontinuities at the initial and final times and to decrease 

. smoothly and continuously during the intermittent time-interval. 
The problem is related to the determination of the optimal cool 

down in fiber-reinforced, epoxy-resin composite materials where 
excessive residual stresses within the viscoelastic resin are detrimental 
to the load-carrying capacity of the composite laminates. In particular, 
graphite fibers possess a null coefficient of thermal expansion, so that 
the shrinkage of the relatively soft epoxy is severely inhibited during 
cool-down. 

Discontinuous paths were shown to exist in several viscoelasticity 
problems [1-4]. In the present problem the initial discontinuity can 
be explained intuitively by the fact that it introduces instantaneous 
residual stresses which undergo relaxation during subsequent times. 
The magnitude of this jump cannot be excessive because the time-
temperature shift property dictates that high temperature levels, 
subsequent to the initial drop, would relax the instantaneous stresses 
in a most efficient manner. 

The present problem was treated previously [3,4], by an iterative 
numerical scheme. The main deficiency of that scheme was that, in 
the absence of a clear method to select an appropriate initial guess, 
it was not obvious under what circumstances convergence was as
sured. 

In addition, consideration is given to the cool-down temperature-
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time path which maintains a constant value of the thermal stress 
during the cooling process. This path also contains initial and final 
temperature discontinuities. 

2 A n a l y s i s 
Consider a thin isotropic viscoelastic slab, whose circumferential 

boundary is bonded to rigid walls.1 The slab is stress-free at a certain 
elevated temperature Tj and subjected to a fluctuating ambient 
temperature T(t). Due to the thinness of the slab and the relatively 
high value of its heat conduction coefficient we neglect transient 
temperature states across the thickness and assume that the entire 
plate is subjected to spatially uniform temperatures T = T(t). Con
sequently, the only stresses within the plate are the spatially uniform, 
in-plane normal stresses which are denoted by a = a(t), while all in-
plane and shear strains vanish. 

Consider a thermorheologically simple viscoelastic response and 
assume that the coefficient of thermal expansion a and Poisson's ratio 
v are constants. Elementary considerations then yield [3] 

- °(t) •• 
Jo~ m 

d[T(T) • 

dr 
'-dr (1) 

In (1) E(t) is the relaxation modulus and 

£ (« ) ' 
Jo a 

ds 

T(s)} 

is the reduced time where a(T) is the "shift factor" function. 
Consider now the case of cool-down, where the temperature 77 is 

dropped to a prescribed final value of Tp during a time span tf. The 
purpose of the subsequent analysis is to determine the optimal cool-
down path T(t), 0 < t < tf, which minimizes the stress a(t) at t = tf. 
We shall hypothesize that the optimal cool-down path T(t) possesses 
discontinuities at times t = 0 and t = tf. The validity of this hypothesis 

1 Alternatively we could consider a quasi-isotropic laminate of a fiber-rein
forced composite where the fibers—being much stiffer than the viscoelastic resin 
and possessing a negligible coefficient of thermal expansion—provide the in-
plane geometric constraint. 
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will be proven a posteriori. It may be recalled that for a special, simple 
form of E{t) it was already shown that no continuous optimal path 
exists [3]. 

Denote T(0+) = T0 and T(tJ) = Tf then (1) yields 

1 - " .... r't „ r „ , . - ;„. . .d[T(T)-T/] 
: » ( * ; > - £ K ( * / ) - « ( T ) 1 -
a «/o- d r 

Ldr 

where 

: £[£(i/)](7o - 77) + £(0) (Tf - Tf) + I(tJ) (2) 

. d[T(r) - Ti] 
I(tJ)= C'ElXt,)-S(T)]' 

• /0 + dr 
-dr (3) 

Let T(t) be the optimal path and T{t) = T(£) + tt)(t) be an adjacent 
path, then 

(T0 + er,o ~ 77) 

+ £ ( 0 ) ( T F - 7 7 - « / / ) + ' / (4) 

1 - v , . , J /*</ ds Htf)=E\ J ——-
*v) 

where 

rnE\r't_dL_ 
Jo+ [JT a(T+ei)): 

d[T(r) + ei;(T) - 77] 

( 
dr 

(5) 

Fundamental considerations of the calculus of variations require 
that 

de 

1 - v . 
• Htf) = o 

whereby 

[Jo a 
+ VoE\ 

i(T(t)\ 

dl\ 
-VfE(0)+—\ = 0 (6) 

dt\{=o 

where 

—I = C'\E\ C ds If C' a'(n$)) w 
deL-o Jo+ I [ J i a (T(s) )J [J t a2(T(s)) ' 

M t a(T(«)). 
+ JS 

dT 

dt (7) 

In equations (6), (7) and the sequel primes indicate derivatives with 
respect to the argument. 

Denote 

M(t) S'E'\S"-
Jo \Jp a 

ds 

(T(s)). 

then 

M'(t) = E-is:-. ds 

(T(s)). 

T'(p) dp 

T'(t) 

(8) 

Integration by parts of (7) yields 

dl\ r ( 7 a'(T(s)) a l \ w , N Ctj a 

— =M(t) \ - -
delf=o. Jt a 

Jo* [Jo [Jp 

*(T(s)) l!=o+ 

tf ds 

P a(T(s)) 

ds 

T'(p)dp 
a'(T(t)) 

a2(T(t)) 
r)(t)dt 

+ E\P-[Jt a 

i t = t ; 

(Tis))!^ l(=o+ 

r7E'\r-
Jo+ [Jt a{ 

v(t) 

a(T(t)) 
dt (9) 

»(T(«))J 
The first term on the right side of (9) vanishes at both limits. Com
bining the remainder of (9) with (6) we obtain 

Jo+ 

E'(t,tf) a'(T(t)) 

a(T(t)) aHT(t)) 
CE'{p,tf)T'{p)dp 

Jo 

+ (T0-TI)E'(0,tf) r)(t)dt = 0 (10) 

Hence Euler's equation for our problem is 

E'(t,tf)-
 a'(Tit)) 

a(T(t)) 
C'E'ip.tf) T'(p)dp 

Jo 

+ (To - T/) E'(0,tf) = 0 (11) 

In (10) and (11) E'(ti, t2) denotes 

E'\ r t 2 -
[Jti a( 

ds 

i(T(s))j 

We can now observe that if no initial discontinuity were assumed, i.e., 
To = T[, then equation (11) would yield the contradictory result 
E'(0,tf) = 0. This proves the existence of the initial discontinuity. 

The magnitude of To — T/ is determined by setting t = 0 in (11) 
which yields 

a (To) 
To-77 = - (12) 

a'(To) 

Since o > 0 and a' < 0 for all T, the temperature undergoes an 
initial drop. Expression (12) is a transcendental equation for To. 

Multiplying (11) by a(T(t)) T'(t), we obtain 

a(T(t)) M'(t) - [M(t) + k] a'(T)T'(t) = 0 

where M(t) is defined in (8) and k = (T0 - T/) E'(0,tf). 
However, (13) can be written as 

(13) 

aHT) 
M(t) + k 

a{T) 
•0 

consequently, we get 

M(t) +k = C0a(T(t)) (14) 

The constant Co can be determined by the conditions at t = 0 
which, together with (12), give 

C _ (71o ~ 77) E'jO.tf) _ E' (O.tf) 

° a(T0) a ' (T 0 ) 

Differentiation of (14) with respect to t yields 

E'(t, tf) = C0a'(T(t)) (15) 
Expression (15) represents the Euler's equation for our problem 

over the interval 0 < t < tf. 
Another version of the Euler's equation can be obtained by dif

ferentiating (11) with respect to t, then substituting the result back 
into (11) to eliminate the integral there. These operations yield 

dT E"(t,tf) a'(T(t)) 

dt ~ E'(t,tf) a(T(t))a"(T(t)) 
(16) 

Note that if (15) is differentiated with respect to t then the result, 
in combination with (15), leads to (16). 

Data on polymeric resins [5-7] indicate that in most cases a'/aa" 
< 0, while E"IE' < 0 in view of thermodynamic considerations [8]. 
Consequently, equation (16) shows that the temperature T continues 
to drop monotonically over the interval (0, tf). The value of Tf = T(tJ) 
as determined from (16) would generally differ from the prescribed 
value of Tp. We thus conclude that the optimal path would undergo 
a second jump discontinuity of magnitude Tf — Tp at the final 
time. 

3 A n I tera t ive S c h e m e for t h e D e t e r m i n a t i o n of the 
Opt imal P a t h — P o s i t i v e - D e f i n i t e V a l u e s of <r( t) 

Consider the optimization problem posed in Section 2 with pre
scribed temperatures Tj and Tp and for a given time tf. 

The temperature To is determined by (12). 
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Fig. 1 Optimal temperature path T(t) (solid line) and the associated stress 
(1 — v)a(t)la (dashed line) for the three-element model with A = 1, B = 20, 
7/ = 100, A0 = 0.1, Bo = 1, and X = 1 for two cases of 7> = 50 and 7> = 0. 
Note the scale of 7", 0 < T< 100, and of (1 - v)a( l)/a between 0 and 10. 
When 7> = 50 the value of (1 - v)o(t))la Is -28 .61 . While for 7> = 0, 
(1-v)o-(fJ)/a = 26.39, 

To obtain the optimal path for 0 < t < tf guess T/(1) and employ 
(16) to obtain all preceding temperatures by numerical integration. 
Carrying the integration backward to time t = 0 yields a value T(0) 
which in general will differ from To. In view of the aforementioned 
properties oia'/aa" and E"/E' we note that if To < T(0) a new guess 
value T/(2) < T/(1) should be tried, and vice versa. The procedure can 
be repeated, with subsequent guesses obtained through interpolation 
or extrapolation of previous values, until a value T/ is found for which 
To = T(0). 

Obviously, to each guess value Tf there corresponds a unique path 
T(t) and a unique T(0). Consequently, the optimal path, which is 
obtained by integration of (16) and passes through To at t = 0+ , is 
unique. 

It is worth noting that insertion of (16) into (2) yields, for 6 < t < 
tf 

t E(r,tf) E" (j,t,) O ' ( T ( T ) ) 

o+ 
-o(t)< 

E'(T,tf) 
•di 

a(T(r)) a"(T(T)) 

+ E ( ( U ) ( T / - T o ) (17) 

In view of the aforementioned properties of EE"IE' and a'/aa" the 
integrand in (17) is always positive, implying that ait) > 0 along the 
optimal path. If Tf > TF then a{t) remains positive at all subsequent 
times. However, if Tf < TF then it is possible to obtain negative 
stresses a for t > tf. 

If for any specific case it also happens that a'(t) > 0 for 0 < t < tf 
then the knowledge of a(tj) may suffice for assessing the detrimental 
effects of the thermal stresses. For the three element model considered 
in the next section it was observed that a'it) > 0 and a"(t) > 0 for wide 
ranges for tf, but this property does not hold in general. 

4 T h e Opt imal P a t h for a T h r e e - E l e m e n t Mode l 
Consider a three-element model for which the relaxation function 

is given by 

E(t) = A0 + So exp (-t/A) (18) 

where 

AQ = E„ > 0, So = EQ - E„ > 0 

Substitution in (15), and integration yield 

rT d0 
t1 

'To F(0) 
(19) 

where F(T) = a'(T)/a(T)a"(T). 
Assume now 

Fig. 2 Optimal temperature path T(t) (solid line) and the associated stress 
(1 — v)a{t)/a (dashed line) for the three-element model with A = 10, B = 
2, T, = 150, TF = 0, 4 0 = 0.1, B0 = 1, X = 1 and /, = 100. Note the scale of 
T, - 2 6 < r < 150, and of (1 - v)ala between - 1 and 26. 

a(T) e x p | - - + S 

Straightforward manipulations yield 

(20) 

(21) T(t) = A[B- In <MO] 

where 0(t) = t/\ + exp C, C = S + 1 - Til A. 
The instantaneous jumps in T(t), which occur at t = 0 and t = tf 

are given by 

T(0) -Ti=-A 

T(tJ) - T(t}) = A[B - In <t>(tf)} - TF 

The ensuing stresses are 

1-v 

(22) 

a 

l - v 

l - v 

a(t) = A (A0[ln <Mt) + 1 - C] + S 0 | 

a(tj) = A{A0{ln <t>(tf) +.1 - C] + B 0 | (23) 
a 

a(tf) = A0(T/ - TF) + B0\A [S + 1 - In <j>(tf)\ - TF] 

Results based upon equations (21) and (23) are plotted in Figs. 1 
and 2. In Fig. 1 A = 1, B = 20, T/ = 100 and TF takes the values of 0 
and 50, respectively. In Fig. 2, A = 10, B = 2, T, = 150, and TF = 0. 
In both figures A0 = 0.1, B = 1, A = 1, and tf = 100. 

Both figures show the optimal temperature path T(t) (in solid lines) 
and the consequent stress path o(t) (in dashed lines). Observe the 
abrupt changes in the temperature at time tf. In addition, the tem
perature paths contain sudden drops at t = 0, of magnitudes T/ — 
T(0) = A. The stress paths u(t) also exhibit abrupt changes at t = 0 
and t = tf. Note that the trend of a(t) is always in an opposite direc
tion to T(t). 

The three-element model affords an analytical check on the nature 
of the optimal path. For instance, if we consider the path 

t(t) = A[B - In (j>(t)] + €7,o (Vo = constant), 

then a somewhat laborious calculation shows that the stationary value 
provided by (21) corresponds to a minimum for <r(tf). 
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5 T h e Opt imal P a t h for " P o w e r L a w " R e s p o n s e 
Consider the relaxation function 

E(t) = At + A2 (t + to)'"- (24) 

which is widely utilized to describe the response of resins. Also, let 
a(T) be given by (20). Substitution in (16) yields 

T'=-(n+ l)A exp (T/A - B) I exp [T(T)/A - B]dr + t0 (X tf 

Differentiating (25) with respect to t we get 

Ci(T')2 = T" 

where 

n 

(25) 

(26) 

C i ' 
(n + l)A 

The solutions of (26) is 

T = — In: L,K > 0 
Ci K+Cit 

where K and L are arbitrary constants. 
Insertion of (27) into (25) gives 

_ \t0(K + C1tf)
1'neB\"/"+i 

(n+ l)A 

and the initial condition To = (1/Ci) In (L/K) yields 

L = Ke^T<> 

(27) 

(28a) 

(28b) 

Equations (28) result in a transcendental equation for K (and L). 
In view of (28a) we note that for a power law response the optimal 
path depends on the cooling time tf. 

The initial drop is again given by (22)i, while the final temperature 
drop is now 

m)-ntt)-±l*j^rT, (29) 

6 C o n s t a n t - S t r e s s T e m p e r a t u r e P a t h s 
Consider now a different aspect of the cool-down problem. Instead 

of an optimal value for a(tf) let us search for a temperature path T(t) 
which maintains a(t) = co during 0 < t < tf, with co a prescribed 
constant. 

In view of (1) we have 

1 - K 
• (7o = E(Q) (To - 77) 

(30) 

To - 77 = -
1 - v Co 

a E(0) 

Substitution into (1) yields an integral equation for T{t) 

P £K( t ) - £(T)] ^ d r - — - ^ (£[£(*)] - £(0)) = 0 
»/o+ d r a F 

(To 

E(0)' 

(3D 
Equation (31) can be solved by numerical iteration which is omitted 

here. 
We shall restrict consideration to the three-element model for 

which 

E(t) = A0 + Boe-*t 

Setting (32) into (31) gives 

AoT + Bo f ' e x p | - / 4 £ ( t ) - £ ( T ) ] | — dr 
Jo+ dr 

(32) 

1 - v Q-Q-BQ 

a Ao + B, 

-50 

-4 

LOG 1. 

-2 o\ \\\ 2 

A 

K> 

Fig. 3 Constant-stress cool down temperature paths. TL for the linear case 
and 7ff for the nonlinear case, versus log f, for A0 = 0.1, B0 = 1, fi = 1, A = 
10, B = 2, 7| = 150 and (1 — v)oola = 27.61. In the nonlinear case OQ/SQ 
= 1/2. The optimal temperature path Topl and the associated values of 
(1 — p)o~opt/a are shown in dashed lines for comparison. Note the different 
scales for temperature, —50 < T < 150, and for (1 — v)ala between 0 and 
30. 

Differentiating (33) with respect to t, then subtracting from (33) 
multiplied by fi we obtain 

dT _ n ApT + J 3 0 ( 7 7 - Tp) 

dt A0 + B0 a(T) 

Note that since a{T) > 0, T drops monotonically with t. 
Select a(T) = exp (-T/A + B) as in (20). 
Substitution in (34) and integration yield 

(34) 

t= --
Ao + Bo cT exp(-8/A + B) 

S, dd (35) 
li JT0B0{TI-TO) + AO8 

where the initial condition T(0) = T0 was employed. 
Denote G = (T, - To)B0/A0, m = C/A +B,k = (C + T)/A, k0 = (0. 

+ To)/A. Performing the integration indicated in (35) we get 

t=_Ao±Boe^m_k)_Ei{_ko)] 

ix Ao 

where Ei(x) is the exponential integral function defined by 

(36) 

Ed ,)= re-
J—» z 

dz (x < 0). 

It is interesting to note that the constant-stress temperature paths 
for nonlinear viscoelastic response can be obtained without additional 
difficulty. For many resins [9, 10] the paramount nonlinear effects 
may be incorporated into the shift factor function, i.e., a = a(T, a). 
However, for a constant-stress path a = ao thereby a = a(T, ao) = 
d(T) and the computation of T(t) remains essentially the same as in 
the linear case. 

Consider the three element model and assume 

• | e x p [ - / i £ ( t ) ] - l ! = 0 (33) 
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a ( 7 » = exp( — + B\ (37) 
\ A so / 

Then, the result presented in (36) remains valid provided we replace 
B with B — cro/so-

Results are exhibited in Pig. 3 where the temperature paths T L for 
the linear response and T„ for the nonlinear response are drawn versus 
log t. The computations were performed forj4o = 0.1, Bo = 1, \i = 1, 
A = 10, fl = 2, fi = 150, (1 -.v)aja = 27X1 and <TO/S0 = V2. For 
comparison purposes the optimal temperature path and the ensuing 
stresses (1 — v)a/a along that path are shown in dashed lines in the 
figure. Note that all paths are of the same character, though the op
timal path begins at a higher initial temperature To. 

7 Concluding Remarks 
This paper presented optimal cool-down paths which minimize the 

residual thermal stress at time t = tf, i.e., immediately after termi
nation of cooling. These temperature paths were shown to contain two 
jump discontinuities. The magnitude of the first jump, which occurs 
t = 0, depends strictly on the shift-factor function a (T) and is always 
directed downward. The second jump, which occurs at the terminal 
time tf, depends on the prescribed final temperature Tp as well as on 
tf and a(T). 

It is to be noted that the paths presented herein provide only local 
optima, since the calculus of variations approach is valid only in that 
restricted sense. In some circumstances the lowest o(t~f) may be ob
tained from "extraneous" paths, not in the neighborhood of the op
timal paths derived in this paper. If Tf > Tp then obviously a(t) < 
o-(tf) for t > tf because the stresses continue to relax with time. 
However, if Tf < Tp, so that the final jump in temperature points 
upward, it may happen that a(t) > o(tf) for t > tf. A criterion for this 
circumstance was discussed in [3]. 

It should be emphasized that if Tf ^ Tp then cooling along the 
optimal temperature path may result in intermediate stresses which 
exceed |o-(t*)|, thus presenting a more severe condition than is ap
parent by the last value. However, if only Tp is specified (with Tp < 
To) then when this temperature is reached smoothly along the optimal 

path at t = tf all the intermediate stresses a(t), t < tf, are minimal. 
Finally, it was shown that for a constant stress during cool-down 

the temperature path contains initial and final discontinuities which 
resemble the optimal solution. 
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10 Cartner, J. S., Jr., and Brinson, H. F., "The Nonlinear Viscoelastic Be
havior of Adhesives and Chopped Fiber Composites," V.P.I. & S.U. Report 
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A New Cumulative Damage 
Model—Part 4 
Application of the new cumulative damage model to two sets of fatigue crack growth data 
is presented. It is shown that the model can describe the statistical features of crack 
growth including mean and variance of time to reach a specified crack length, cumulative 
distribution of time to reach a specified crack length, and sample function behavior. 
Moreover, this is done with very little effort. 

Introduction 
Fatigue crack growth is a random cumulative damage phenomena 

which has and continues to attract a great deal of attention. The usual 
approach in the literature [1-4] is through a deterministic differential 
equation; since the phenomena is random in nature, there exists the 
problem of how randomness is to be introduced. It is thus fitting to 
close this four-part series on a new random cumulative damage model 
with a presentation of how this model applies to the crack growth 
problem in metals under cyclic loading. 

Part 1 presented the basic elements of the model. Part 2 illustrated 
some of the potential of the model and demonstrated the use of the 
model in describing and analyzing some life data from fatigue and 
wear. Part 3 showed that life data does not characterize the damage 
accumulation process, that without knowledge of the details of the 
process, accuracy in life prediction under a change in condition is 
limited, and that data can be collected to improve the definition of 
the details of the process. To conserve space, we refer the reader to 
these papers [5-7] for the notation used and a description of the 
model. Suffice it to say that the model is an embedded Markoff pro
cess with discrete states and discrete time; thus the mathematics is 
in terms of Markoff chains. 

The purpose of this paper is to demonstrate, using two sets of data, 
how the model can be used to describe and analyze these data in a 
simple manner. We also shall show that the precrack phase of fatigue 
can be combined easily with the crack growth phase. • 

We shall contrast in a future paper the results obtained by our 
model with the results obtained by the usual deterministic ap
proach. 

The Data 
We shall use two sets of data [8,9]. An aluminum tension specimen 

with a central slit perpendicular to the tension axis is employed in [8], 
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ment. Manuscript received by ASME Applied Mechanics Division, July 1979; 
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with 68 replications. A steel compact tension specimen is used in [9], 
with data from 23 replications used in our analysis. 

The data in [8] consist of the times in cycles to reach the same 
specified crack length for each specimen; 164 crack lengths are used 
ranging from 9 mm to 49.8 mm for half length. From these data, mo
ments of times to reach the specified crack length are estimated, 
sample functions can be plotted by connecting adjacent data points 
with segments of a straight line, empirical distribution functions of 
the times to reach specified crack lengths can be obtained, etc. The 
distribution of time to reach a specified crack length is unknown and 
not normal; thus we cannot give precise confidence intervals. However, 
some idea of relative size of the confidence intervals for mean and 
variance can be obtained by assuming the distribution is normal; we 
find, with confidence coefficient equal to 0.90 and equal tails, sample 
size n, 

Mean: (xn - 0.2022 an, xn + 0.2022 an), 
Variance: (0.7338 on

2, 1.3001 an
2). 

The estimated values of mean xn and variance an
2 of time to reach 

a specified crack length and relative confidence interval are shown 
in Figs. 1 and 2. The mean is obviously well determined with 68 rep
lications. The variance is statistically acceptable but shows the effects 
of sample variability. The signal to noise ratio, i.e. xn/an (reciprocal 
of coefficient of variation) rapidly becomes large (>5) for these 
carefully controlled laboratory experiments. The effects of sample 
variability rendered the third and fourth central moment estimates 
unacceptable for any practical use. 

The data gathered in [9] came from a number of different labora
tories. Time records started at, ended at, and were recorded at dif
ferent crack lengths. To avoid extrapolation problems, the crack 
length interval (22.9 mm, 50.8 mm) is used in this paper; 23 specimens 
have records that encompass this interval. We adjusted all records 
to start at time = 0 at 22.9 mm. The times to reach specified crack 
lengths are obtained by straight line interpolation between adjacent 
points. Thus we have performed two smoothing operations in these 
data that we did not use in the data of [8]. We find the moments of 
time to reach specified crack lengths, etc., from these smoothed data. 
The relative confidence intervals based upon the normal assumption 
corresponding to the aforementioned are 
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Fig. 1 Estimated mean rf)„ versus a for data of [8] 
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Fig. 2 Estimated variance a„2 versus a for data of [8] 

a 

9 
11 
13 
17 
20 
26 
33 
42.4 
49.8 

*n(a)/102 

0 
557 
911 
1394 
1639 
1988 
2265 
2485 
2512 

Table 1 
a„(a)/102 

0 
65.8 
93.5 
111.4 
124.0 
138.3 
152.1 
174.3 
183.1 

xn(a)/bn(a) 

8.47 
9.74 
12.51 
13.22 
14.38 
14.89 
14.26 
14.05 

T a b l e 2 
H = Pj/qj 

1,.. 
64,.. 
91,.. 
150,.. 
167,.. 
197,.. 
215,.. 
222,.. 

.,63 

.,90 

.,149 

.,166 

.,196 

.,214 

.,221 

.,224 
with P225 = 1 

7.813 
12.174 
7.186 
13.412 
10.631 
14.389 
30.429 
42.500 

Mean: (xn - 0.3580 an, xn + 0.3580 an), 
Variance: (0.5608 on

2,1.5420 3-„2); 

these intervals are much larger than those for [8] as is expected. Figs. 
3 and 4 shows the estimated mean and variance of time to reach a 
specified crack length. The effect of the smoothing operations is ap
parent. Again we do not use third and fourth central moments because 
of sample variability. The signal to noise ratio xjan does not exceed 
5.5; this is indicative of variability encountered among several labo
ratories. 

The two sets of data yield statistically acceptable estimates only 

SM 

15.4 • 

t 
/ 

V 

^ 
s 

Fig. 3 Estimated mean m„ versus a for data of [9] 

for mean and variance of time to reach a specified crack length, due 
to restrictions imposed by the small number of replications. Therefore, 
model building also is restricted to the use of these two estimates. 

T h e Mode l 
Data From [8]. The model can be made to describe the data in 

as much detail as is desired. However, there is little point in pushing 
the detail too far since only mean and variance are available. We 
therefore shall only use the data shown in Table 1. 

Following the procedures given in [7], we find the description of the 
model listed in Table 2. A comparison of Tables 1 and 2 reveals that 
state s = 1 corresponds to crack length 9 mm, s = 64 —• a = 11 mm, 
s = 91'— a = 13, s = 150 — a = 17 mm, s = 167 -* a = 20 mm, s = 197 
—• a = 27 mm, s = 215 —• a = 33 mm, s = 222 -* 42.11 mm, and s = 
225 —• a = 49.8 mm. The correspondence between other s and a is 
obtained by finding the two values that have the same mean value. 

Data From [9]. Table 3 gives the data used to construct the model 
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a 

22.6 
26.7 
29.2 
31.6 
38.1 

. 44.5 
50.8 

1 
x„(a)/102 

0 
434 
657 
837 

1151 
1321 
1394 

able 3 
CfnW/W2 

0 
95 

138 
171 
221 
252 
273 

xn(a)/an(a) 

4.57 
4.76 
4.76 
4.89 
5.21 
5.24 
5.11 

Table 4 
i 

1,. . . , 20 
21 25 
26, 27, 28 
2 9 , . . . , 33 
34, 35, 36 

row 37 has 0.315 in column 37 
and 0.6851 in column 45 

: Pill) 

3 7 , . . , 46 
with P47 = 1 

20.7 
44.0 
59.0 
61.8 
84.0 

68.3 

for this case. This table leads to Table 4. We find by comparing tables 
t ha t s = 1 — a = 22.6 mm, s = 21 — a = 26.7 mm, s = 26 —a = 29.2 
mm, s = 20— a = 31.6 mm, s = 34 -* a = 38.1mm, s = 28— a =44.5 
mm, s = 47 -* a = 50.8 mm. 

We note that the model as specified by Table 4 differs from the 
model specified by Table 2. This difference is traceable to the fact that 
in going from a = 1.75 in. to a = 2.00 in., the ratio A£/A<r becomes less 
than 1, necessitating a slight change in procedure to obtain the needed 

R e s u l t s 
Results are similar for the two cases. Because [8] contains 68 rep

lications, most of our remarks apply to that case. 
Let lVi|8 denote number of cycles to reach state s given specimen 

in state 1 at time zero. EW\,S and Var Wis agree with the data in the 
two cases at the states (and corresponding crack lengths) listed in 
Tables 1 and 3. The correspondence between state s and crack length 
a is established by means of the equation 

xn{a)=EWu (1) 

This correspondence is illustrated in Fig. 5. Using this correspondence, 
we find that the curve 

EWg:a versus a 

lies on top of the curve of xn (a) as is shown in Fig. 1. We also find that 
the curve 

Var Wgi0 versus a, 

shown as the dashed curve in Fig. 2, provides a reasonable fit to the 
curve <sn (a) versus a supplied by the data. Thus, as far as the first two 
moments of the time to reach a given crack length are concerned, the 
model defined in Table 2 is very good. The corresponding results for 
the model defined in Table 4 are comparable. 

The model generates the cumulative distribution function (cdf) 
Fw(x;9,a) of the time Wv,a to reach a given crack length a. We can 
construct from the data the corresponding empirical distribution 
function (edf) F(x;9,a). Fig. 7 shows a comparison of these two dis
tribution functions at the crack length where the model and data fit 
and where the fit was worst. 

Fig. 8 shows the two distributions at a crack length where the model 
was not made to fit the data. The fit in this case is better than shown 
in Fig. 7. Thus there is no reason to reject the model based upon these 
results. 

The model also generates sample functions. Sixty-eight sample 

50.8-

ZS.4' 

__,_ 
/• 

• 
- « * -

_ » * 1 

r̂ 
v7 

4 tftf 6 

Fig. 4 Estimated variance a„ 2 versus a for data of [9] 

|0| 201 s ta le 

Fig. 5 Model state s versus a for data of [8 ] 

functions are shown in Fig. 8. The 68 sample functions of the data are 
shown in Fig. 9. The sample functions from the model are somewhat 
rougher than those from the data, primarily because the model only 
matches the data at 9 values of a. They both show considerable in
termingling. 

D i s c u s s i o n 
The first point to observe is that the models are second-order 

models, namely, only the first two moments are used in their con
struction. The data only provide statistically acceptable estimates 
of the mean and variance of the number of cycles to reach a given crack 
length, with the latter having large confidence intervals. (With only 
the first two moments acceptable, the models are restricted to the 
second order.) If more replications are available to supply acceptable 
estimates of moments to higher order, the model can be adjusted to 
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a = 20m«vi. 

1300 1500 .1700 X/l»l 1900 

Fig. 6 Model generated cdf of time to reach crack length a = 20 mm and 
and corresponding edf from data of [8] 

Fig. 7 Model generated cdf of time to reach crack length a = 14.8 mm and 
corresponding edf from data of [8] 

take account of this additional information. Thus the choice of the 
order of the models is dictated by what the data will support. 

The second point to observe is that the fineness of the models used 
was arbitrarily selected. For example, in Table 1 we used nine values 
of crack length at which the model was made to fit mean and variance. 
More or less values or different values of crack length could have been 
selected. Nine values were chosen so that the curve mean versus a of 
the model would fit the corresponding curve of the data with con
siderably accuracy. Going to more values of crack length would smooth 
the sample functions. However, in view of the large magnitudes of the 
approximate confidence intervals for the variance, it could be argued 
that too many Values have already been used. At this time, we have 
not used a measure that would permit us to decide the "best" number 
of values to use. Thus the fineness of the model is an open question. 
But we wish to point out that recent techniques such as the Akaike 
Information Criterion [10] might be used to judge the best value of 
fineness that should be used. 

The third point to observe is that the models are not unique. We 
have used one-jump models, which are the simplest. However, we 
could have used two-jump models, for example. However, among 
one-jump models, based upon the data of Table 1, the model defined 
by Table 2 is unique. The one-jump model defined in Table 4 and 
based upon the data of Table 3, is unique up to the last stage; in the 
last stage, a choice of the form of the rj is made. Uniqueness is not a 
requirement here any more than it is in the construction of finite-
element models. 

The fourth point to note is the ease with which the models are 
constructed. We need only calculate the first two moments of the time 
to reach a specified crack length; this is a trivial task. The construction 
of the models based upon these data is almost as easy to obtain. Not 
only does the model describe mean and variance, but it provides 
distributions on time to reach a specified crack length. This effort 
contrasts in our model's favor with the effort required in [8] to use the 
da/dn approach which provides less information. 

Finally and most importantly, these crack growth models can easily 

s.oo 
lo'.OO 3S.0O 

Fig. 8 68 sample functions generated by model for data of [8] 

be combined with appropriate models of fatigue damage accumulation 
before a crack can be detected. Let P i denote the probability tran
sition matrix for the constant severity precrack phase, and let P2 
denote the probability transition matrix for the constant severity 
crack growth phase. Then, the constant severity probability transition 
matrix P for the combined phases is defined by 

P i ' Obi-i,fr2-i 

Ofcai,- P2 
(2) 

where in P i ' the last row has been deleted from Pi . The change when 
either or both phases are nonstationary also can be handled. Thus our 
model can easily combine all phases of fatigue into one simple form 
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that can then be used to predict behavior under a wide variety of 
conditions. 

Conclusion 
We have demonstrated in the foregoing that our new model can 

easily assemble into one simple structure crack growth data. The crack 
growth phase also can easily be combined with the precrack phase. 
No other model known to us can do this. The model also provides 
information on the probability a crack will reach a specified length 
at a specified time; thus there is no need to use da/dn scatter to obtain 
information on early crack growth. A question that naturally arises 
is, how does the model apply to other stress conditions, materials, 
geometry, environment, etc.? It is a straightforward task to construct 
a test program that will relate model parameters to such changes; this 
will be commented upon elsewhere. 

A few final comments on this series of papers are in order. 
The discretization of state and time, makes the computational 

procedure easy to use, and in this respect is similar to what finite-
element techniques have done in continuum mechanics. 

In confrontation with data from fatigue, crack growth, and wear 
the model has shown its ability to describe and analyze data and has 
demonstrated its diagnostic ability. 

The general structure of the model makes it possible for the first 
time to view the cumulative damage process in a comprehensive and 
coherent manner. The model assembles into a single structure the 
specification of material and manufacturing defects and storage 
degradation, severity, and order of DCs and environmental and 
changing material properties effects, failure and/or replacement 
criteria, and inspection standards and replacement policy. From the 
view point provided by this general structure, much of what occurs 
in cumulative damage phenomena takes on meaning which can be 
readily interpreted; limits on accuracy of life prediction can be as
sessed, life cycle costs can be assessed, and suitable test programs 
designed to achieve a given accuracy. We know of no other model that 
has these features. Obviously, the model can be generalized in a 
number of directions if this should prove necessary. 
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Brittle Fracture of Plates in Tension 
Virgin Waves and Boundary Reflections 
Virgin waves emitted during tensile fracture of edge-notched brittle plates have been 
measured at points on and away from the crack path. The results are in excellent agree
ment with the analysis of Freund. Boundary reflections were also determined. Both the 
rear and the front edge reflections are small but not negligibly small; the former are ten
sile, the latter compressive. Unloading waves are propagated behind the crack tip, and 
are small compared to the loading waves, which are propagated ahead of the tip. The front 
edge reflections were also examined near the edge; these are compressive and large. Final
ly, for an embedded crack, the field scattered by the stationary crack tip was found to be 
negligibly small. 

Introduction 
Dynamic stress fields in the vicinity of a rapidly propagating crack 

were recently studied by Kinra and Bowers [1] who used single-
edge-notched (SEN) glass specimens subjected to fracture in tension. 
The recorded signals contained, of necessity, reflections from the edge 
containing the crack-initiating notch and hence were not truly "virgin" 
in nature. The purpose of the present work is 

1 To study these waves prior to the arrival of any reflections. 
2 To measure the boundary reflections by isolating them from 

the virgin waves. 

The arrival of the boundary reflection from the "rear" edge (see Fig. 
1) was delayed by using specimens with very long notches. Following 
[1], stresses at a point lying on the prospective crack path were mea
sured first. These are compared with the experimental results of [1] 
and the analytical results of [2]. Next, stresses at a point some small 
distance away from the crack plane were recorded; these are compared 
with the corresponding experimental results of [1]. Next, the reflec
tions from the "front" and the rear edges are determined. The stress 
field scattered by the stationary crack tip when one tip of an embed
ded crack begins to propagate was also measured. Finally, waves 
traveling behind the crack tip have been recorded. 

Experimental Procedures 
With reference to Fig. 1, the earliest boundary reflections are from 

the rear edge. These can be delayed only by making /o suitably large 
(the reflections from the other three boundaries could be easily de-
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Fig. 1 Schematic of a typical "wide" specimen 

layed by increasing the size of the specimen). Now it would be more 
desirable to apply a to the entire width W, for that would result in 
simplified expressions for the stresses in the plate. However, there 
are two considerations which prohibit this. First, in view of large la 
(152 mm), crack initiation would have occurred at a low value of a. 
Since the amplitude of the emitted waves is proportional to a, our 
calculations revealed that the waves would have been too small to be 
measured satisfactorily using the strain gages (microvolt signals). 
Second, after a certain amount of extension the dynamic stress-in
tensity factor Kw would have been large enough to cause branching 
or veering (hooking). Since we wish to compare our experimental re
sults with the analysis of Freund [2] based on the assumption of rec
tilinear motion of the crack, branching or hooking could not be tol
erated. Consequently a was applied only to a fraction of the width. 
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The value of a required for crack extension could be made suitably 
large by placing the crack tip outside the loaded width (see Fig. 1). 
Further, with this type of loading the stress decreases rapidly as the 
crack tip extends beyond the center line of the load, thus branching 
could be avoided in most of the experiments. It is emphasized that 
all data reported in this paper are for those cases where a rectilinear 
motion of the crack was observed across the entire width of the 
specimen. 

In addition to the "Wide" specimen shown in Fig. 1, two other types 
were also used in the investigation: "Intermediate" (254 mm wide 
with a 51 mm embedded notch) and "Narrow" (100 to 150 mm wide 
with 20 mm edge notch). In all cases the height (2h = 305 mm) and 
the thickness (B = 6 mm) are the same. The specimens used in this 
work were from the same batch as those used in [1]. The properties 
of glass, as stated by the manufacturer, are: velocity of longitudinal 
waves ci = 5800 m/sec; velocity of shear waves c?. = 3350 m/sec; 
Young's modulus E = 70 X 109 N/m2; Poisson's ratio v = 0.25, and 
density p = 2.5. 

The rest of the experimental procedures have already been de
scribed in [1]. 

Theoretical Considerations 
Consider the specimen shown in Fig. 1. The applied stress a is in

creased quasi-statically until the static stress-intensity factor K\ 
barely exceeds the fracture toughness K\c, and the crack begins to 
extend. We will assume here that the crack extends with a constant 
velocity v; justifications for this assumption may be found in [1]. The 
objective of this section is to derive expressions for 022*(xi, 0, t)—the 
dynamic component of the stress at any point (xi > 0, X2 = 0) on the 
prospective crack plane. 

The simple analysis starts with an expression for the stress in the 
uncracked plate, 0-22(̂ 1, *2 = 0). The necessary expressions for the 
stress in the cracked plate, <J22° (*i> 0) a r e derived next. These are 
substituted into equation (3) of [1] (which in turn was derived from 
equation (3.2) of [2]) to obtain the desired expressions for (722* (*i, 
0, t ) . 

Let 5a/3 be the (static) stress field in the specimen of Fig. 1 if it had 
been uncracked. It will be subsequently shown that 0-22 (yi> 0) ->• 0 
at the rear and front edges of the plate, hence we assume that plate 
is infinitely wide along y±. Then from [3], 

ff22(yi,0)= ("°dp~F(P) cos (for), 
Jo 

where 

F(/3) = 
2o-sin(/3c) 

TT/3 

Sh($h) + fihCh(fih) 
fih + Sh(fih)Ch(Ph) 

(2) 

fc f(z)dz, f(z) = e '" zv / i / (z + xi),z = t + iu, a n d C = C1 + CR + C2 

+ C,„ where C\\ z = te", e is an infinitesimally small positive real 
number, and p < t < R, where p and R are, respectively, small and 
large positive real numbers; CR: Z = Re'0, e < 8 < ir/2; 0$. z - ue,lr/2, 
p < u < R; Cp: pe'°, c < 8 < ir/2, and C is traversed in the counter
clockwise direction. The integrand is rendered single-valued by in
troducing a branch cut along the positive real axis. Using the standard 
techniques of the residue theory, it can be readily shown that in the 
limit as p —• 0, R —- •», and e —- 0, 

f f(z)dz = - C f(z)dz = ei*'i C" ——e-f>"du. 
Jci Jc2 Jo u + x\e~llr'2 

The integral is recognized as a Laplace transform, and from [5], 

f f(z)dz = e'^Hir/P)1'2 - TrOciJ^e- '^i erfc |e-''*/4(*i/J)1/2). 
Jc, >Ci 

(6) 

To evaluate erfc ( ), the contour, of integration is chosen along a 
straight line from 2 = e~"li(xiPY12 to 2 = 0, and from 2 = 0 to 
2 = °> along the positive real axis: 

erfc \e-^4(xiP)1/2} = 1 - (1 - i)[C(JCIJS) + iS(xi0)], 

where C( ) and S( ) are Fresnel integrals [6] defined by, 

• ( * )W 

(7) 

C W - f c ) So cos (t2)dt, 

Six)-
'2\l/2 /»(*)>« 

,71-j J o 
sin (t2)dt. (8) 

Substituting (7) into (6) and taking real and imaginary parts, 

1/2 
h = —I - T K * ! ) 1 ' 2 cos (/fei) + TTUO^ICOS (j&dMCdfa!) 

+ S<fixi)\ + sin (0X1) jSGS*!) - C(pXl))], (9) 

T T W 2 

h = F jd + TT(XI)1'2 sin (/&!) + TTUO^ICOS (fixi)\S(pXl) 

- CO?*!)) - sin (pXl)\S(pXl) + C(Px{)}]. (10) 

From equations (9), (10), (5), (1), and o-22° = 022 + "22'' we obtain, 

cos j3l — sin {51 
(1) <T220(*1,0)= C" dPF(P) 

Jo (2-KPXI)U* 

+ cos @(Xl - 1)\C(PX{) + S(jSxi)) 

+ smP(x1-l)\S(pXi)-C(Px1)\ (11) 

We now introduce the edge crack y2 = 0*, — » > y\ < - I. By the fa- From equation (3) of [1], 

(722* (* 1,0, t) 
7r(xid - t ) 1 / 2 j; g~220(jco, 0)[»o(ri -c)-(t- cXi)]dx0 ^) 

(xi - xo)[(t - a*i) - xo(d - a)] 1/2 

miliar argument of superposition, the stresses in the cracked plate, 
ff«/3°, may be written as aap° = dap + a„@c, where aa0

c are the stresses 
due only to the tractions — om.{y\ 0*) acting on the crack faces. An 
expression for <722c, which can easily be derived from [4], is 

— 7 = j -ds —— cos P(s - l)d/3. 
•wVx\ J-" (s - -xi) Jo V/3 

ait (3) 

for ax\ < t < dxi and ff22*(xi, 0, t) = 0 otherwise. Here t = 0 is the 
instant of crack initiation and a, b, c, and d are, respectively, the 
slownesses (i.e., inverse of the speed) of dilatational, distortional, and 
Rayleigh waves, and the crack tip; and XQ cr = (t — aX{)/(d — a). Fi
nally, the total stress (static plus dynamic) is given by, 

where we have substituted y\ = X\ — l and used equation (1) for cr22(yi, 
0). Let 

0-22(*l, 0. t) = <T22°(*1, 0) + 0-22*(*1, 0, t). (13) 

•V~s J*- v s cos ps , c" Vs sin ps 
as and h = \ ds, 

0 s + Xi Jo s + X\ 
(4) 

then 

0-22° = — 7 = r"d/3i?( /?) | / i -cos/3/- /2sin/3*| . (5) 
7TVX1 JO 

In order to calculate I\ and 12, consider the contour integral. 

Now the expression (12) for ff22*(xi, 0, t), in view of equation (11) 
for (T220, is a very complicated double integral to evaluate. However, 
considerable reduction in the numerical effort could be achieved by 
making the following observations. (722 (equation (1)) and <T22° 
(equation (11)) are plotted in Fig. 2. The range of X\ for which 0-22° 
enters into equation (12) is from x\ = 0 (crack tip) to x\ = 57 mm 
(strain gage location, see Fig. 3) or 0 < X\/h < 0.375. Over this range 
(722° is shown in the inset. With the obvious exception of the crack-tip 
singularity, it appears that 0220 m a v D e adequately approximated by 
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Fig. 2 Stress distribution on the crack plane for the specimen of Fig. 1 

(all dimensions are in mm) 
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Fig. 3 Virgin waves emitted during fracture of the specimen shown; com
parison with experiments of [1] and analysis, equation (14) 

a constant value: let (T22
0 = m& = °o (say); for the particular geometry 

of Fig. 1, m = 0.75. It is noted that by neglecting the singularity, we 
are neglecting the discontinuity in stress propagated with the dila-
tational wavefront. However, as reported in [1] and further confirmed 
in this investigation, the discontinuity is not observed experimentally 
because in reality the stress at the crack tip is finite. Also note that 
aiila becomes negligibly small near the plate boundaries, justifying 
the assumption made in deriving the foregoing equations that the 
plate is infinitely wide. Setting 0-22° = <ro in (12), substituting the result 
in (13), and defining 2„,s .= <J„p/<Ta, S*a^ = <r*ap/oo, one obtains 

2 2 2 U l , 0 , f) = l + 2* 2 2 Ul ,0 , t), 

— 1 (*x0cr 

It is emphasized that equation (14) is valid only for (1) points with 
X'i = 0, and (2) for time before the arrival of any boundary reflections. 
These are consequences of the fact that Freund's analysis [2] is for 
rectilinear motion of a semi-infinite crack in an infinite medium. 

Results and Discussions 
1 Virgin Waves at a Point on the Crack Plane. The specimen 

of Fig. 1 was used to record the emitted waves. At the top of Fig. 3 we 
have included a schematic which shows the location of the strain 
gages. The stresses 2 n and 222 are shown as solid lines. The average 
crack velocity over 0 < X\ < 57 mm was found to be 1.695 mm/jusec 
or 0.067 in./^sec; equivalently bv = 0.51. The earliest boundary re
flections arrive at 53 /usee, hence the recorded signals are virgin for 
the entire time shown and may, therefore, be compared with the an
alytical results, equation (14). (The analytical results for 2 n are not 
yet available.) The comparison between the theory and the experi
ment is considered excellent, particularly in view of the fact that the 
analysis [2] is based on the plane strain assumption while our exper
iments were conducted in essentially plane-stress conditions. This 
is an encouraging result because much of the analytical work con
cerning (opening) Mode 1 dynamic crack propagation is based on the 
assumption of plane strain. It cannot be directly applied to laboratory 
specimens or real life structures because, in these, plane-strain con
ditions are seldom realized. The excellent comparison just mentioned 
suggests that the plane-strain analyses may very well be applicable 
to plane-stress failures. This conclusion is drawn with the appropriate 
caution that our results are for a particular specimen geometry and 
loading conditions. 

In Fig. 3 we have also reproduced the corresponding experimental 
results obtained in reference [1] using a "narrow" specimen (152 mm 
wide) as well as the geometry of that specimen. Due to the proximity 
of the rear edge to the crack tip (19 mm) these results contain rear 
edge reflections (RER) in addition to the virgin waves for t > 16.5 
/usee. The arrival time of the reflection and of the crack tip at the strain 
gages is indicated by arrows labeled R and C, respectively. (Similar 
notation will be used throughout this work to indicate arrival time.) 
The results of the present investigation (solid lines) are virgin waves 
alone. Note also that the gages are located at xi = 57 mm, x% = 0 in 
both specimens. Therefore, the difference—dashed lines minus solid 
lines—are the RER in the narrow specimen at x 1 = 57 mm, x 2 = 0 for 
t > 16.5 psec. Both 2 n and 222 component of the RER are tensile, 
and small but not negligibly small compared to the virgin waves. Some 
implications of this observation will be discussed in Section 3.5 when 
the discussion concerning the boundary reflections is complete. 

2 Virgin Waves at a Point Away From the Crack Plane 
(X2 ^ 0). For the problem under consideration the exact analytical 
solution for the stresses 2„0 at a generic point (i.e., with X2 ̂  0) does 
not appear to be in sight. We have measured these stresses and re
ported them here with a twofold purpose: 

1 For comparison with the results of approximate models if and 
when they appear in literature. 

2 We hope that our results may provide some useful insight to a 
theoretical mechanician considering an approximate model. 

A wide specimen (Fig. 1) was used in this experiment. The strain 
gage location is shown in Fig. 4(a) and the measured stresses are 
shown as solid lines. These are virgin until 53 /usee when reflections 
from the loading grips arrive (indicated by arrow G). The crack ve
locity v = 1.75 mm/yttsec (bv = 0.52) for this experiment. In [1], similar 
results were obtained with the same (x\, XQ) gage location. Since 
"narrow" specimens were used, the recorded signals contained rear-
edge reflections. For use in a subsequent section, the specimen ge
ometry is reproduced in Fig. 4(6), and the 2„^ are shown as chain 

2* 2 2 Ui ,0 , i ) 
Tr{xid — t) 1/2 f 

Jo 

dxi 
xo(d — c) — (t — cxi) 

(xi - x0)[(t - axi) - x0(d - a)} 
(14) 
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Fig. 4 Virgin waves emitted during fracture of specimen (a); determination 
of boundary reflections by comparison with other experiments 

lines. Evidently, the general features of the two sets of data are quite 
similar; these have been discussed in [1]. Here discussion is limited 
to a specific observation of interest. Let tc be the time when the tip 
occupies xi = 57 mm. For t > tc = 32.5 jusec, the gages have trac
tion-free surfaces in their immediate vicinity, hence one would expect 
the stresses 2i2 and 222 to drop off rapidly to zero thereafter. Instead, 
222 appears to approach a nonzero plateau and 212 attains rather large 
magnitudes for t > tc, although it does approach zero eventually. (This 
phenomenon was observed in all similar experiments with "narrow," 
"intermediate," or "wide" specimens.) It is conjectured that these 
phenomena may be due to the emitted Rayleigh waves which propa
gate along the crack surfaces without suffering attenuation. Finally, 
2 n exhibits two maxima surrounding t = tc, corroborating similar 
observations in [1]. 

3 Boundary Reflections. There are a number of situations 
where the boundary reflections may play an important role: 

1 Most analytical solutions of Mode 1 dynamic crack problems 
are for semi-infinite cracks in infinite media, hence they are valid only 
up to the time when the first reflection from either the boundaries or 
the stationary crack tip (in case of embedded cracks) arrives at the 
running crack tip. 

2 Frequently in photoelastic investigations ofKu>, measurements 
are made after the boundary reflections have impinged upon the crack 
tip. 

3 In experiments dealing with crack arrest problems (a number 
of articles may be found in [8]) the duration of the experiment is 
usually large compared to the transit time of the waves. The dynamic 
effects may, therefore, influence the crack-arrest process in relatively 
smaller specimens. 

These are some of the reasons for undertaking the experiments 
described in the following, in which the boundary reflections are de
termined. It was found that the reflections are small but not negligibly 
small compared to the virgin waves. It is emphasized that these 
measurements are for only one particular geometry and loading 
conditions and for extremely fast fracture: bv m 0.5. 

3.1 Rear Edge Reflections (RER). These reflections were de
termined by comparing the results of two different experiments. 
Recall that 2„£ measured with the specimen 4(a) are virgin (solid 
lines). However, due to close proximity of the rear edge to the 
notch-tip in specimen 4(b), these measurements (chain lines) contain 
RER for t > 16.5 yusec, indicated by R(6). (Note that %\, x2 coordinates 
of the gage are identical in specimens (a), (b), (c) of Fig. 4 and (d) of 
Fig. 5. Thus the virgin waves alone are identical in all four cases.) 
Therefore, the difference—chain lines minus solid lines—is due to 
the RER in specimen (fa) at x\ = 57 mm, xi = 6.4 mm for 16.5 < t < 
36 /usee; the upper limit corresponds to the front edge reflection whose 

(all dimensions are in mm) 
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Fig. 5 Determination of field scattered by the stationary tip of the specimen 
shown 

arrival time is indicated by F{b). The subtraction has not been ex-
plicity carried out for reasons deferred to the Appendix, 

Discussion. X22: the RER is tensile throughout the period of ob
servation, the maximum amplitude is about 0.5, and it goes to zero 
at about 35 /isec; recall that tc = 32.5 /usee. 2 n : again the RER is 
tensile and the peak amplitude is about 0.5. 2 l 2 : the RER is quite 
small and changes sign at about t = tc. In conclusion, rear edge re
flections are tensile, and for the particular specimen (6), are small 
but not negligibly small compared to the virgin waves. 

3.2 Front Edge Reflections (FER). These were determined in 
a similar manner. The front edge reflections in specimen (6) arrive 
at t = 36 fisec, indicated by F^b). Now compare specimens (b) and (c); 
with the exception that the front edge in (c) is 50 mm closer to the 
strain gages, the two are exactly identical. Thus, in specimen (c), the 
FER begins to arrive at t = 18.5 usee, indicated by F^\ Thus the 
difference—dashed lines minus chain lines—is due to the front edge 
reflections in specimen (c) for 18.5 < t < 36 jtsec. 

Discussion. 222: Note that the peak in (c) is shifted significantly 
to the right relative to the peak in (b), implying that the reflected wave 
is compressive. The maximum amplitude is 0.5. 2 n : again, the re
flection is compressive. (Since the stress field radiated in front of the 
crack was found to be tensile (Section 1), one would expect that the 
reflection from the traction-free front edge will be compressive.) The 
peak amplitude is about 0.5. 2 i 2 : clearly the shear stress associated 
with the front edge reflection is quite small (~0.2) throughout. In 
conclusion, front edge reflections are compressive, and small but not 
negligibly small compared to the virgin waves. 

3.3 Waves Scattered by the Stationary Crack Tip. Attention 
is now drawn to Fig. 5, where the "intermediate" sized specimen (d) 
used in these experiments is shown schematically. Note that the 
specimen has an embedded (rather than edge) notch. A very small 
hole was drilled at the left tip of the notch with an ultrasonic drill and 
filled with an epoxy adhesive; the purpose was to ensure that only the 
right tip propagated when the specimen was eventually subjected to 
fracture by applying a remote uniform tension 00 (see Figs. 1 and 2 
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Fig. 6 Determination of front edge reflection by comparison of experimental 
and analytical results 

of [1] for experimental details). Note also that the location of the strain 
gages is identical in specimens (a) and (d). A fourth strain gage was 
mounted immediately to the left of the blunted notch tip and its 
output during the fracture showed that this tip remained stationary 
throughout the period of observation. The stresses recorded during 
the fracture of specimen (d) are shown as dashed lines in Fig. 5; here 
S0(3 = <x„p/<ro. In addition to the virgin waves these contain the stress. 
field scattered by the stationary tip for t > 21 fisec indicated by S w ) . 
For easy comparison, the uirgin waves obtained with the use of 
specimen (a) have also been reproduced here as solid lines. Thus the 
difference—dashed lines minus the solid lines—is the stress field 
scattered by the stationary tip. Clearly, the scattered field may be 
considered negligibly small compared to the virgin waves. 

3.4 Front Edge Reflections at the Edge. The limitations of the 
foregoing experimental procedures in yielding precise measurements 
of the boundary reflections are discussed in the Appendix. In view of 
that, it was considered desirable to use an independent technique to 
obtain corroborative results. To this end, narrow specimens shown 
in Fig. 6 were used; these were fractured in simple tension, <TO (see 
reference [1] for details). The crack velocity v = 1.63 mm/fisec or 0.064 
m/jxsec. Now if the specimen had been infinitely wide along its width, 
then the stress 222 (= 0-22/co) at the strain gage location would have 
been given by equation (3) of reference [1]; this is plotted as the dashed 
line in Fig. 6. As it is, the measured S22 contains the front edge re
flection from the very instant (22.5 /usee) the dilatational wave front 
arrives at the strain gage; this is shown as the solid line. Therefore, 
the difference—experimental trace minus the analytical trace—is the 
front edge reflection at the edge. It is compressive and its peak am
plitude is about 0.75. This qualitatively corroborates the compressive 
S22 in the FER discussed earlier in Section 3.2. Similar results were 
obtained by Kinra and Kolsky [7] in their experiments with the 
fracture of glass plates in pure bending. They observed a monotonic 
increase in the magnitude of the compressive stress at the front edge 
(which was in compression prior to fracture). Thus it appears that a 
crack will have a tendency to slow down as it approaches a traction-
free edge. 

Finally, in Fig. 6 there is a rapid reversal of slope at about 70 fisec. 
A simple calculation shows that at about this time the tensile crack-tip 
stress field (the so-called singular term) begins to dominate the stress 
at the strain gage location. 

3.5 Concluding Remarks on Boundary Reflections. At the be
ginning of Section 3 a number of situations were mentioned in which 
the boundary reflections may be expected to play a significant role. 
Briefly, these are: analytical solutions of semi-infinite cracks; pho-
toelastic measurements of K I D , and experimental measurements of 
crack-arrest parameters. From the experimental results presented 
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Fig. 7 Rear-going waves for the fracture of specimen shown 

in Sections 3.1, 3.2, and 3.4, it is clear that the boundary reflections 
may not be considered negligibly small—at least for the particular 
range of specimen widths used (100 to 150 mm) and the particular 
crack velocity (bv a* 0.5) observed. Although a quantitative estimate 
of the errors due to the reflections is beyond the scope of this work, 
it is hoped that our measurements will be of some help to other ex
perimentalists concerned about the magnitude of the reflections; for 
any particular specimen size and geometry some estimate could be 
obtained by extrapolating our results on the basis of geometric at
tenuation (X/v/jt) associated with cylindircal expansion. 

On the other hand, the results regarding the stress field scattered 
by the stationary crack-tip (Section 3.3) suggest that in all of the 
situations previously listed, the presence of the stationary crack tip 
may be ignored for all practical purposes. 

Finally, on the basis of the foregoing experimental results, the 
following qualitative assertions can be made: 

1 The tensile rear edge reflections will tend to increase KID 
2 The compressive front edge reflections will tend to decrease 

Kw. 
3 The effect of the stress field scattered by the stationary crack 

tip on K\u can be ignored for all practical purposes. 

4 Waves Radiated Behind the Crack Tip. To complete the 
experimental investigation of the virgin stress field radiated by a 
suddenly propagating crack, strains were also measured at points 
behind the crack tip. The geometry of the wide specimen used is 
shown in Fig. 1; the strain gage locations are schematically shown in 
Fig. 7. The measured strains, eas, have been normalized relative to e 
= a/E (Fig. 1), i.e., ea/s = eap/e. The two traces appearing in the record 
for Gage 4 are the result of a "reproducibility" test. The single arrow 
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on each record indicates the end of the virgin period: R implies rear 
edge reflection; G implies reflections from the grips. 

Discussion. Gages 1 and 3 (en): one would expect that upon crack 
initiation a very strong field will be radiated in all directions. Sur
prisingly, a very weak signal is radiated behind the crack tip as evi
denced by the signals recorded by Gages 1 and 3. In fact, there is no 
discernible signal at Gage 1 until about 20 ftsec and at Gage 3 until 
about 40 usee, which is nearly the entire virgin period. Gages 2 and 
4 (en): here the records are as expected. At Gage 2 there is a rapid 
initial drop corresponding to the arrival of the dilatational wave front. 
Subsequently, as the tip moves further away, the slope decreases. The 
same remarks apply to the record of Gage 4 with the expected dif
ference that the initial drop is more gradual because the gage is located 
farther away. Gage 5 (en): throughout the virgin period, en ~ 0. This 
may be attributed to the large distance (45 mm) between the gage and 
the notch tip. Gage 6 (e22): again the signal is very much as expected. 
A rapid initial drop in strain corresponds to the arrival of the dilata
tional wave front, suggesting that the emitted wave is relatively 
stronger along the ray 8 = 7r/2. Together, these records show that for 
the initial motion of a crack, the stress field in the vicinity of the tip 
is strongly dependent upon the angle 0. Another interesting obser
vation is that while loading (or tensile) waves of relatively large 
magnitude (2„/3 ~ 1.0) are propagated ahead of the crack tip (Sections 
1 and 2), unloading (or compression) waves of relatively small mag
nitude (eajj ~ 0.2) are propagated behind it. 

Conclusions 
The foregoing investigation of stress waves emitted during fracture 

and their boundary reflections has led to the following conclusions. 

1 For a point on the crack plane, the virgin waves compare re
markably well with the predictions of Freund [2]. The comparison was 
better than in [1], where the recorded signals also contained the rear 
edge reflections. 

2 At a point away from the crack plane (%i ^ 0), the complete 
stress field in its virgin state has been recorded. 

3 The reflections from the rear edge are tensile, and their maxi
mum amplitudes (S^max ~ 0.5. 

4 The reflections from the front edge are generally compressive, 
and their maximum amplitude (2„0)max ~ 0.5. 

5 At a point on the crack plane and near the front edge, the front 
edge reflections are compressive and (222)max = 0.75. 

6 For the case of an embedded crack, the stress field scattered by 
the stationary crack tip is negligibly small for the particular geo
metrical configuration tested. 

7 The waves propagated behind the crack tip are considerably 
smaller than those propagated ahead of the crack tip. 

8 For the initial motion of a crack tip, the stress field radiated 
behind the crack trp and measured in its immediate vicinity was found 
to be very small, which is contrary to expectations. It appears, 
therefore, that the radiated field has very strong angular depen
dence. 

9 Loading waves are propagated ahead of the crack tip, whereas 
unloading waves are propagated behind the tip. 
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APPENDIX 
1 a changed somewhat from one experiment to another. The 

terminal crack velocity may also be expected to change accordingly. 
Since the emitted waves are velocity dependent, the two experiments 
cannot be considered as exact replicated measurements. 

2 A typical oscillographic measurement is in error by about 5 
percent; the difference of the two experiments would be in error by 
about 10 percent. 

3 The maximum deviation of the crack from its assumed 
straight-ahead path was found to be about one (1) mm.. The conse
quent errors in the measured stresses can be shown to be negligibly 
small for the most part except near t = tc where the maximum error 
was estimated to be about 10 percent. 

4 As discussed in Experimental Procedures, the time-delay can 
be determined only to the accuracy of ±1 usee. Let 2„/3

a and 2„j36 

denote, respectively, the stresses obtained with specimens (a) and (6) 
of Fig. 4. A quick examination of these traces reveals that if they are 
displaced by ±1 usee relative to each other, the rear edge reflection, 
20 /5

6 — 2„0a , will be significantly affected. (This difficulty led to the 
following procedure for fixing t = 0. For 0 < t < 16.5 usee both data 
are virgin and hence should be identical, except for measurement 
errors. Choosing 2„0° arbitrarily as the reference, t = 0 in 2„^ 6 was 
fixed by minimizing the difference between 2ap

a and 2„0 6 over the 
duration 0 < t < 16.5 fisec.) 
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Construction of a Dynamic Weight 
Function From a Finite-Element 
Solution for a Cracked Beam 

An elastodynamic weight function for a cracked beam is shown to be determined by the 
elastodynamic stress intensity factor corresponding to a single crack-face loading of the 
beam. This weight function suffices to determine the time-dependent stress intensity fac
tor corresponding to other dynamic loadings of the same cracked beam. The example of 
a center-cracked pinned-pinned beam serves to illustrate and verify the technique. The 
weight function is constructed from finite element results for the case of a step pressure 
distributed uniformly along the beam, and the case of a step load concentrated at the 
crack plane serves as an illustration of the efficacy of the weight function so constructed. 

Introduction 
A problem of considerable interest in linear elastic fracture me

chanics is the determination of the dynamic stress-intensity factor 
for a cracked body of finite dimensions which is subjected to time 
varying loads. Since purely analytical techniques are usually inap
plicable to problems concerning finite bodies (whether static or dy
namic loads are applied), the major work in this area has been per
formed using the finite-element method. This form of analysis, 
however, can have several severe drawbacks which make its wide
spread use impractical. The large requirements for computer storage 
and/or running time can be quite prohibitive, especially when per
forming parametric studies to determine the effects of different 
loading conditions and crack lengths. 

For statically loaded bodies, the weight function technique is an 
excellent method for determining stress-intensity factors with a 
minimum of computational effort. Bueckner [1] and Rice [2] have 
shown that ifthe displacement field and Mode I stress-intensity factor 
are known for a symmetrically loaded cracked body, then the stress-
intensity factor for the same body under another symmetric load 
system can be obtained by the evaluation of simple integrals. A 
computational scheme which eliminates the need for knowledge of 
the displacement field has been presented by Petroski and Achenbach 
|3] for edge-cracked bodies. 

The elastodynamic counterpart of the Bueckner-Rice weight-

1 Presently, Bell Telephone Laboratory, Naperville, 111. 60540. 
Contributed by the Applied Mechanics Division and presented at the Winter 

Annual Meeting, New York, N. Y., December 2-7,1979, of THE AMERICAN 
SOCIETY OP MECHANICAL ENGINEERS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N. Y. 
10017, and will be accepted until June 1,1980. Readers who need more time to 
prepare a discussion should request an extension from the Editorial Depart
ment. Manuscript received by ASME Applied Mechanics Division, December 
1978; final revision, July, 1979. Paper No. 79-WA/APM-37. 

function principle has been derived by Freund and Rice [4], but the 
elastodynamic principle does not appear to have been applied to 
cracked bodies with finite boundaries. In this paper we demonstrate 
a technique whereby the principle is applied to the dynamic analysis 

• of cracked beams. 
The result of Freund and Rice applies to a linear elastic solid con

taining a planar crack under conditions of plane strain. The body is 
assumed to be symmetrical with respect to the crack plane and only 
loading systems which give rise to Mode I deformation are permitted. 
For time t < 0, the material is stress free and at rest. At time t = 0, a 
traction distributed on the boundary T begins to act. If, for a system 
of reference loads, the elastodynamic stress-intensity factor k(l;t) is 
known as a function of the crack length parameter I and time t and 
the displacement u(/;x,t) is also known on the boundary as a function 
of l,t and position x, then for any second symmetric system of time-
dependent loads, the Laplace transform of the elastodynamic 
stress-intensity factor can be expressed as 

£<2>(/;p) = f f<2>(x,p) -h(/;x,p)dr. (1) 

The caret herein denotes the Laplace transform with respect to time, 
and p is the Laplace transform parameter. In equation (1), t(2)(x,p) 
is the Laplace transform of the traction distribution for the second 
problem and h(/;x,p) is the transform of a weight function given by 

h(l;x,p) = -Hlk*(l;p)]-l-a(l;x,p) 
2 d( 

(2) 

where the constant H is related to Young's modulus and Poisson's 
ratio by 

H = E/{1 - v2). (3) 

Equation (1) can be used in two ways; In the first application, 
t '2 '(x,p) is the actual surface traction, which is often zero on the crack 
faces. For the reference problem, the displacement u(l;x,p) must be 
known at points where the surface tractions of the second problem 
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are applied. In the second application, which exploits the principle 
of superposition, one first computes the stresses across the crack plane 
in an uncracked body subjected to the surface tractions of the second 
problem. The crack faces of the cracked body are then loaded with 

.equal but opposite surface tractions. The displacement u(l;x,p) then 
needs to be known only on the crack faces of the reference problem 
if the body is subject to the same displacement boundary conditions 
in both cases. 

Although equation (1) is conceptually very interesting, it is not 
practically useful in its present form. For the reference problem, both 
k(l;t) and u(l;x,t) must be computed, e.g., by the finite-element 
method. The Laplace transform must be taken, the integral in 
equation (1) must be evaluated, and, finally, the inverse Laplace 
transform must be calculated. This sequence of steps must be per
formed numerically and can give rise to accumulative errors, and an 
accurate description of the crack-opening displacement u(/;x,i) might 
require a very refined finite-element grid. 

Our purpose here is to present significant simplifications to this 
procedure for beamlike bodies with edge cracks. Finite-element results 
suggest that the time-dependence of the crack opening displacement 
may be taken as approximately the same as that of the elastodynamic 
stress-intensity factor. In addition, the spatial variation of the crack 
opening displacement appears to be proportional to the one for the 
corresponding static problem. This suggests the use of the weight-
function technique with crack face loading (the second application 
of equation (1) mentioned earlier). These assumptions, along with the 
representation for the Bueckner-Rice weight function made in ref
erence [3], enable one to limit the input from the reference problem 
to simply the elastodynamic stress-intensity factor. The only other 
pieces of information necessary are the stresses across the crack plane 
in an uncracked beam subjected separately to the surface tractions 
of the reference and second problems. 

To illustrate our procedure for applying equation (1), we consider 
two step loadings of a beam with an edge crack. In the reference 
problem, the beam is loaded uniformly and the elastodynamic 
stress-intensity factor is determined for different crack lengths by 
the finite-element method. In the second problem, a point load is 
applied at the crack plane and the elastodynamic stress-intensity 
factor is computed both by the weight function techniques of this 
paper and by the finite-element method. The results show excellent 
agreement. It is also demonstrated that the technique can easily ac
commodate an input of discrete values from finite-element compu
tations. 

Analytical Development 
For the case of crack-face loading (to which all other loading con

ditions can be reduced by appealing to the principle of linear super
position), when both the reference and second problems involve the 
same displacement boundary conditions, equation (1) can be rewritten 
as an integral over the crack face only, yielding 

kW(l;p) = H[k(l;p)]-1 C <r™(y,p)-u(l;y,p)dy (4) 
Jo dl 

where H is given by equation (3). In equation (4), y and / are the di
mensionless quantities 

7 = £/d and / = aid (5a,b) 

where £ is a rectangular coordinate with origin at the crack mouth, 
d is a characteristic dimension of the body, e.g., its thickness, and a 
is the physical crack length. In equation (4), u(l;y,p) is the crack-face 
displacement normal to the crack plane and <7<2)(7,p) is the negative 
of the normal stress across the plane of the crack when the uncracked 
body is loaded with the surface tractions of the second problem. If 
<r(2)(7>P) is taken to be the same as that for the reference problem, 
equation (4) reduces to the following identity: 

[Hl;p)Y = H C a(y,p)^u(l;y,p)dy. (6) 
J o dl 

For the elastodynamic reference problem, we can write 

k(l;t) = K(l)fk(l;t) (7) 

where K(I) is the stress-intensity factor for the corresponding static 
problem. For the cracked-beam problems we will consider, we make 
the following assumptions: 

u(l;y,t) = U(l;y)fu(l;t) (8) 

fud;t) « /*(/;*) (9) 

In equation (8), U(l;y) is the crack opening displacement for the 
corresponding static problem. These assumptions are valid for all 
beamlike structures in which the vibrational response is dominant. 
Any diffracted waves from the crack tip will only add slight pertur
bations to the basic modal response. Since these wave propagation 
effects are minimal, large time steps may be used in the finite-element 
calculations without fear of filtering out significant contributions. 

For edge cracks, the static stress-intensity factor can generally be 
expressed in the form 

K(l) = gK(l)HdW> (10) 

and the corresponding crack opening displacement may be written 

U(l;y) = gu(l;y)d. (11) 

The static equivalent of equation (4) is 

§Ki2)U) = [gK(l)\-1 ("T.m(y)-,8u(i;y)dy (12) 
Jo dl 

and the dimensionless functions gxU) and gu(l) are related by the 
static equivalent of equation (6) (cf. equation (3) of reference [3]), 

[gKd)]2= CY.h)-,Bu(l;y)dy (13) 
Jo dl 

where H2(y) is the static stress across the plane of the crack in the 
uncracked body. As shown in reference [3], for giveng#(0 and 2(7) 
this relation allows the determination of the following approximate 
representation for gu(l;y) 

gud;y) = 2(2M1'2gK(l)(l - 7 ) 1 ' 2 + G(0/~1 / 2( / - 7 ) 3 / 2 (14) 
where 

G(D = \h(l) - 2{2M^gK(Dh(l)]lm/h(l) (15) 

h(D= C'[gK(r)}2dT (16) 
Jo 

h(D= f Z(yW-y)mdy (17) 
Jo 

h(D= f ' E ( 7 ) C - y)3/2dy (18) 
»/o 

By employing the well-known limiting value 

gK(D = 1.1215 Z(0)v^r7 as / - * 0 (19) 

and using the mean-value theorem to evaluate the integrals (16)-(18), 
G(0) may be determined to be 

G(0) = -0.34758 £ (0 ) (20) 

Hence gu(l;y) is known completely from the quasi-static stress-
intensity factor gx(I) and corresponding crack-face loading for the 
reference problem. The weight function may now be derived. 

Invers ion of t h e T r a n s f o r m e d E q u a t i o n s 
Assumptions (8) and (9) may be employed to provide the following 

expression for du/dl in transform space: 

^ = h(l;p) 1 U(l;y) + -Jkd;p)U(l;y). (21) 
dl dl dl 

If the order of spatial integration and inversion of the Laplace 
transform can be interchanged, then we may formally invert equation 
(4) after substituting equation (21). This formal inversion will always 
be possible if the product 
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a(2)(y;p) — u(l;y,p) 
dl 

is separable into a sum of products of functions of 7 only and functions 
of p only. The representation (21) shows this separation to be the case 
for du/dl. 

When <r(2)(7,£) is known only at discrete points, as is the ease when 
a finite-element solution is the source of the stress field, then at each 
discrete point yn = (n — 1/2)A7, where A7 is the element length and 
N(l)Ay = /, we have for n = 1, 2, 3 N 

<r™(yn,t) = «•„<%) (22) 

a function of time only. Hence for each yn we have the integrand of 
equation (4) represented properly for forma] inversion of the Laplace 
transform. Using a mean-value theorem and the convolution theorem 
then gives 

mi) . 
*«>( / , * )= d r i f t e d ) ] - 1 Z [Jln(kt) + J2nU;t)} 

where 

(23) 

(24) Jm(l;t) = <r„<2>(t) CnAy ~gud;y)dy 
J(n-l)Ay dl 

J *liAy s*t 

gud;y) I Onm(s)F(t - s)dsdy (25) 
( / I - I )AT Jo 

and where F(t) is the inverse Laplace transform 

F(t) = X ~ i 
dl 

h(i;p)/hd;p) (26) 

In these expressions gu(l;y) is given by equation (14), fk(l;t) is known 
from the reference problem, and the stress distribution cn

<2)(4) is 
determined from a finite-element analysis of the uncracked body 
subjected to the load system of the second problem. 

The ideal reference problem would have the body loaded with only 
a uniform crack-face pressure, so that the integrations (17) and (18) 
may be determined in closed form. However, when a finite-element 
program provides the solution in the reference problem, it is more 
convenient to not load the crack surfaces, and the case of a uniform 
step pressure applied to the boundary of the beam initially at rest is 
a logical choice. The resulting vibrational response of beamlike bodies 
dominates the response and generally has the approximate form 

fudlt) = fkd;t) = 1 - cos [u(l)t] (27) 

where the frequency w is a function of crack length. Any wave prop
agation effects that might be superimposed on this response may be 
ignored as a good first approximation, but for geometries other than 
beams a more complicated representation may be necessary. 

At this point the finite-element results may be used directly to 
evaluate the integrals in equations (24) and (25) as shown in the next 
section. 

There is a wide class of vibration-like problems for which the in
version of the Laplace transform may be performed analytically, and 
only the spatial integrations need be done numerically. These are 
problems for which the stress response for the second problem may 
be represented by a Fourier series of L terms 

<r(2>(%i) • • E [Am^(y)cosoimt + BjHy)Bmamt] (28) 
m=0 

where u>o = 0 for notational convenience. Taking the Laplace trans
forms of the representations (27) and (28) and employing (7) and (8) 
in equation (4) gives 

&{2}(1;P) = ^ E f Wm<2,(7) ~gud;y)p(P2 + . 
m=0 Jo dl 

2)" 
K(l) m=o -

+ 2AmW(y)gu(l;y)u-*w'p:i(pZ + W*)-i(p* + o ^ 2 ) " 1 

+ Bm<2)(7) ~gud;y)com(p2 + com
2)-i 

dl 

+ 2BmM(y)gu(l;y)umo>-lo>'pHp2 + co2)-1(p2 + <om
2)-1]d7 (29) 

P 0 H ( t ) 

V 

.VI 
I I I I I I I I I 

( 0 ) 

(b) 

Fig. 1 Geometry and loading of (a) the reference problem and (b) the second 
problem employed as examples 

where 00' = dco/dl. This may now be inverted to give 

2o>' Hd L 

K(l) m t 0 

-[Gm<2>(/)cosaj£ 
M l - / - m

2 ) 

+ rmHmW(l)Smut] 

dGm<2>(0 2a>Vm
2 

dl • c o ( l - r m
2 ) 

dHm<2>(/) ' 2a.Vm
2 

dl < o ( l - r m
2 ) 

GJV(l) 

Hj»(l) 

COS (0mt 

SID Dm* 

where 

G m
( 2 ) ( 0 = (" AmW(y)gu(l;y)dy 

Jo 

HmW(l)= f BmM(y)gu(l;y)dy 
Jo 

rm = rm(l) = wm/co(l). 

(30) 

(31) 

(32) 

(33) 

E x a m p l e s of T e c h n i q u e 
To illustrate the practical application of the procedures just out

lined, we consider the plane-strain elastodynamic response of an edge-
cracked beam which is rigidly supported at two points as shown in Fig. 
1. The reference problem consists of loading the upper surface of the 
beam with a uniform pressure poH(t), where H(t) is the Heaviside 
step function. In the second problem, which is depicted in Fig. 1(6), 
a concentrated load PoH(t) is applied to the upper surface of the beam 
in the crack plane. For the finite-element calculations, the following 
values were chosen: 

d = 2.54 cm (1 in.) 
L = 12.7 cm (5 in.) 

Po = 6.89 MPa (1000 lb/in.2) 
P0 = 1750 N/cm (1000 lb/in.) 
•E = 207 GPa (3.0 X 107 lb/in.2) 
p = 0.0298 g/cm3 (mass density : 

v = 0.3. 
0.00075 lb/in.3) 

One half of the symmetric beam was modeled with a 10 by 25 element 
grid of 0.254 cm sq finite elements. In order to obtain an estimate of 
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Table 1 Dimensionless quasi-static stress-intensity factors for the reference 
problem 

I 0 .1 0.2 0.3 0.4 0.5 0.6 0.7 0 .8 

K/p/ua 14.23 14.75 16.02 18.27 .. 22.04 28.56 40.97 69.50 

Table 2 Dimensionless quasi-static stresses across crack plane for the 
second problem 

n 1 2 3 4 5 6 7 8 9 10 

LK ' x 10 1.542 1.220 0.935 0.672 0.423 0.180 -0.065 -0.329 -0.637 -1.629 

Table 3 Dimensionless quasi-static stress-intensity factors for the second 
problem 

i 

K ( 2 ) h / P YTa o 

F i n i t e Element Eq. (34) Eq. (12) 

Table 4 Values of <o for the reference problem 

* ' 0 0 .2 0 .4 0 .6 0 . 8 

u ( r a d / s e c ) 29361 27083 21969 14960 7480 

along the crack surface. In the present problem there are 10 elements 
across the thickness and thus TV ranges from one to nine. Using the 
notation 2„ ( 2 ) to denote 2 ( 2 ) ( Y ) at position y = (n — 1/2)A7, corre
sponding to element n, the integration in equation (12) can be ap
proximated by the following summation: 

SKi2)d) = IgKd)]-1 E "nZn™ (34) 
7 1 = 1 

where 

—gu(l;y)dy (35) 
(n-l)A-y dl 

and guiky) is given by equation (14). The integration in equation (35) 
can thus be carried out semianalytically. The computations ofgKWU) 
and the subsequent comparison with independent finite-element 
results for K(2>(1) provide a good check on the crack-opening repre
sentation (14) and on the discretization of the integration over y in
troduced in equation (34). The results are listed in Table 3. The 
agreement between weight-function and finite-element results is seen 
to be very satisfactory. 

An alternative procedure for computing K(2)(0 employs least-
squares polynomial fits of the finite-element data to represent K(l) 
and 2(7) for the reference problem. Then equations (16)-(18) may 
be integrated numerically to determine values of the function G(l), 
which also may be fit with a polynomial. If the polynomial represen
tations for K(l) and G{1) are well behaved, they may be differentiated 
term by term to provide the weight function for equation (12). A 
polynomial representation for 2 ( 2 )(7) then enables one to integrate 
equation (12) numerically to obtain the corresponding stress-intensity 
factor Ki2)(l). The results of this technique are also good, as shown 
in Table 3. 

Dynamic Problems. In order to provide input information for 
and verification of the weight-function technique under dynamic 
loading conditions, the CHILES code was modified. The program was 
given dynamic capabilities through the inclusion of a consistent mass 
matrix for the singular as well as transition and ordinary finite ele
ments. The time integration scheme employed for the equations of 
motion was Anderson and Gupta's [6] version of Newmark's /? method. 
This algorithm calculates the displacement increment over the time 
steps At rather than the total displacement at the end of the time step. 
Several other minor programming changes were necessary to create 
an efficient code, and the program was then verified by several test 
problems. The same finite-element mesh as for the static analysis was 
employed to handle the step loading conditions. Time steps of 10 us 
were used in order to pick up all significant modes of response. For 
the reference problem, the elastodynamic stress-intensity factor as 
a function of I and t is shown in Fig. 2, where the symbols represent 
the finite-element results. 

Fig. 2 suggests that the representation given in equation (27), and 
shown here as a solid curve, may be assumed for fu(l;t) and fk(l;t), 
where co(/) may be estimated from the maxima or minima of the fi
nite-element data. Table 4 lists values of w(l) used. The value of a>(0) 
was estimated from the finite-element results for the uncracked 
beam. 

First we shall describe a technique that utilizes the finite-element 
results directly. Taking the Laplace transform of equation (27) 
yields 

hd;p) = M O J V M P 2 + MO]2]"1 (36) 

Employing equation (36), the inverse Laplace transform indicated 
by equation (26) can be evaluated 

0 .1 

0.2 

0 .3 

0.4 

0 .5 

0.6 

0.7 

0.8 

5.85 

5.96 

6.42 

7.29 

8.78 

11.38 

16.34 

27.78 

5 . 9 7 

7.28 

1 1 . 3 5 

27.60 

5 . 6 4 

5 . 9 8 

6 . 3 9 

7 . 2 8 

8 . 7 7 

1 1 . 3 6 

16.38 

2 7 . 1 5 

the accuracy to be expected from the weight function technique, we 
first consider the static problem. 

Static Problems. The finite-element computer code CHILES 
[5] was acquired for the static analysis of the reference and test 
problems. The CHILES program, which utilizes a singular element 
formulation to represent the state of stress immediately surrounding 
the crack tip, is a two-dimensional solid finite-element code in which 
linear isotropic stress-strain material properties and small-strain 
theory are assumed. Isoparametric quadrilateral elements are em
ployed, and compatibility between singular and ordinary elements 
is maintained by transition elements, thereby ensuring monotone 
convergence. The singular element is constructed by enriching a bi
linear displacement assumption with only the first-order terms of the 
asymptotic near-tip field which give the proper singularity at the crack 
tip. From studies conducted with several test problems, it appears 
that CHILES gives excellent results except for very deep crack sit
uations in which the uncracked ligament is represented by only a few 
elements. For all cases, the finite-element results tend to underesti
mate the exact solution with the error increasing with crack depth. 

Table 1 shows values of the stress-intensity factor computed by the 
finite-element method for the reference problem and Table 2 gives 
the crack-plane normal tractions corresponding to the second prob
lem. One can observe from this latter table that 2 ( 2 )(7) is computed 
only at discrete points, viz., the centroids of the finite elements ad
joining the crack plane. The crack must extend over an integer number 
N of finite elements, and, therefore, 2 (2 )(7) is known only at N points 
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Fig. 2 Normalized stress-intensity factor fk(l;t) = k(l;t)IK{ I) as a function 
of time for the reference problem for cases (a) / = 0.2, (b) / = 0.4, (c) / = 
0.6, (d)J = 0.8. Data points are finite-element results; curves are approxi
mations employed in constructing the weight function. 

F(t) = 2[u(l)]-W(l)8(t) - 2a/(0 sin [w(l)t] (37) 

With equation (37), the expression for t/2n (','*), equation (25), reduces 
to 

J2n(l;t) = 2[w(l)]-W(l)J3n(l;t) - 2a'(l)J4n(l;t) (38) 

where 

JsniW = <Tn(2)(t) C y gud;y)dy (39) 
*/(nTl)A7 

J *nAy ft 

gu(ky) <rn™(s)sin[o>(D(t-s)]dsdy-
(n-l)Ay Jo 

(40) 
The integrations in (24), (39), and (40) may now be carried out 

semianalytically. If we use the notation 
<rmn<

2>=<xn<
2>(mAt) (41) 

where m = 0,1, 2, . . . , M, and MAt = t, then the sums of the integrals 
in equations (24), (39), and (40) may be approximated by 

Ji(l;t)= E Jm(l;t)= Y.anan™(t) 
n=l n=l 

J3d;t) = E Jsn(i;t) = E *W2)U) 
n=\ n=\ 
N N M 1 

JS;t) = E Jind;t) = E a« E - (ffmn-i
<2) + <rmn

w)am 

n=l v n=\ m = l ^ 

where a„ is defined by equation (35), and 

•nAy J * nAy 
gu(l;y)dy 

(n-l)Ay 

J *mAt 
sin [oj(/)(MAt - s ) ] d s 

(m-l)Ai 

(42) 

(43) 

(44) 

(45) 

/(m-l)Ai 

and, using equation (38), k^(l;t) follows from equation (23) as 

k W(l;t) = dV2\Ji(l;t) + 2[w(l)]-1u'(l)Js(l;t) 

- 2w'(l)Ji(l;t)}/gK(l). (46) 
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of time for the uncracked beam loaded as in the second problem. Solid curves 
are finite-element results; dashed curves are the Fourier representations 
employed. 
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Fig. 4 Normalized stress-intensity factor as a function of time for the second 
problem for cases (a) / '= 0.2, (b) / = 0.4, (c) / = 0.6, (rf) / = 0.8. Data 
points are finite-element results; the curves are weight-function results. The 
solid curve results from using finite-element stresses directly; the dashed curve 
results from using the Fourier representations of Fig. 3. 

The second technique employs the Fourier series representation 
(28) for the stress field of problem 2, which is shown in Pig. 3. This 
figure also shows the approximation to the stress field given by a 
three-term (plus one constant term) Fourier cosine series. The inte
grations (31) and (32) were carried out numerically and k(2^(l;t) was 
determined from equation (30). 
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The behavior of the stress-intensity factor for the second problem 
as predicted by the weight-function analyses is compared in Fig. 4 with 
the finite-element results. In this figure, the dashed curves represent 
the formulations expressed in equation (30), while the solid curves 
represent that in equation (46). Both predictions are in good agree
ment with each other and with the finite-element solution. The dif
ferences that show up may be explained as due to several causes. 

The principal reason that the weight-function results fall short of 
the peaks and do not drop as low as the valleys of the finite-element 
results may be attributed to this same inadequacy in the approxi
mation of the reference problem response by the simple expression 
for fk(l;t) given by equation (27) and plotted in Fig. 2. Since this 
representation for fk was chosen precisely for its simplicity and the 
resulting simplification of the derivation of the weight function, it was 
not felt a better fit was necessary or desirable. The maximum error 
in the approximation of fk is less than 5 percent at the first peak, and 
this error decreases with crack depth. 

The differences in the results of the two weight-function formula
tions may be attributed to the manner in which the stresses <r(2)(Y;t) 
of the second problem are used. In the formulation which uses the 
finite-element results directly, there is no alteration of the stress field 
represented except insofar as the integration scheme uses mean stress 
values at discrete time steps only. The second formulation, which fits 
the finite-element stresses with a few Fourier terms does alter the 
stress field slightly, as exhibited in Fig. 3. We see in this figure that 
the Fourier representation gives a nonzero stress at zero time, gives 
lower stresses at the first peak, and initially leads the finite-element 
stress field in time. These shortcomings of the representation are 
reflected in the stress-intensity factor response predicted for the 
second problem. These predictable shortcomings may be removed 
by using a closer Fourier representation for the stress field 
o-<2)(7;£). 

Conclusion 
We have demonstrated the efficacy of a dynamic weight-function 

technique that provides an efficient means of extending a single set 
of finite-element results for a cracked beam to other dynamic loading 
conditions of the same cracked beam. The simplicity of the weight-
function technique and the accuracy of its predictions depend pri
marily upon the wise choice and careful modeling of the reference 
problem from which the weight function is constructed. 
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Angled Elliptic Notch Problem 
Under Biaxial Loading 
The strain failure criterion proposed by the second author is applied to obtain general 
solutions for the angled elliptic notch problem subject to uniform biaxial loading. The so
lutions can be reduced to those for uniaxial tension, uniaxial compression, or pure shear 
as special cases. The solution for the case of pure shear is compared with experimental 
data found in literature. It is remarked that the present theory involves material parame
ters and predicts that fracture behavior is dependent on materials being investigated. 

Introduction 
The "angled elliptic notch problem" (also known as the "angled 

crack problem") has received extensive attention from investigators 
in the field of fracture mechanics for many years. In this problem a 
small traction-free elliptic notch or open crack, in the middle of a thin 
isotropic, homogeneous, linear elastic plate or cylindrical shell, is 
subjected to uniformly distributed inplane edge load. The load at 
which new cracks are initiated and the direction of the crack initiation 
are of interest in this investigation. 

Both experimental and analytical work on this subject can be found 
in the literature [1-28]. Uniaxial compressive experiments were 
performed by Brace and Bombolakis [3] and Hoek and Bieniawski 
[4] on glass plates with an angled slit crack, and by Cotterell [6] on 
plates of annealed glass with an elliptical notch. Experiments in 
uniaxial tension were conducted by Erdogan and Sih [1] and Williams 
and Ewing [7] on PMMA, Palaniswamy and Knauss [24] on toluene 
swollen polyurethane, and by Pook [5] on aluminum plates with a slit 
crack; and by Wu, et al. [18], on PMMA plates with an angled elliptical 
notch. Furthermore, in the study of angled crack extension under pure 
shear, Ewing and Williams [11] presented experimental results ob
tained from torsionally loaded thin-walled cylindrical PMMA tubes 
with an angled slit crack; and Liu [27] performed tests on center-
cracked aluminum panels with a special picture frame jig. 

Theoretical work abounds on this subject, each using a different 
assumption and a different criterion for fracture. Erdogan and Sih 
[1] proposed that "the crack will start to grow from the tip in the di
rection along which the tangential stress oo is maximum and the shear 
stress Tyo is zero" (the slit model of maximum stress criterion). They 
analyzed the problem under a uniform uniaxial tensile load. The 
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implication resulting from the inclusion of higher-order terms in the 
eigenfunction expansion of the stress components near the crack tip 
on the maximum stress criterion was discussed by Williams and Ewing 
[7], Pinnie and Saith [8], and Ewing and Williams [9], McClintock [2] 
discussed Erdogan and Sih's [1] paper considering maximum stress 
on the boundary of the elliptic notch as a criterion (the elliptic model 
of maximum stress criterion). Cotterell [6] studied the problem under 
uniform compression utilizing the maximum stress criterion. 

Sih [12,13], Kipp and Sih [15], and Kassir and Sih [16] introduced 
the strain-energy density theory (the S-theory) and studied both 
tension and compression cases. Later, Ewing and Williams [11] in
vestigated the pure shear case utilizing the maximum stress criterion 
as well as the S-theory. Wang [19] modified the S-theory and exam
ined the tension case. Eftis and Subramonian [20] applied the maxi
mum stress criterion of Erdogan and Sih [1] to the study of the biaxial 
tension case. Labourdette and Pellas [21] proposed the stress gradient 
criterion which is based on an energy balance, Tirosh [22] employed 
the energy-momentum tensor criterion, and both examined the ten
sion case of the problem. Wu [23] and Palaniswamy and Knauss [24] 
applied the maximum-energy-release-rate criterion to the investi
gation of both tension and compression cases. Moreover, Coughlan 
and Barr [25] and Ingraffea [26] have utilized finite-element technique 
in the study of the crack initiation problem. 

Recently, the present authors have looked into the angled elliptic 
notch problem [17,18, 28]. Experimentally, Wu, et al. [18], have ob
tained data on elliptically notched PMMA plate under uniaxial ten
sion. Theoretically, Wu and Chang [28] have applied the strain failure 
criterion proposed by Wu [29] combined with the concept of an outer 
contour of the critical neighborhood (or an effective notch) in their 
studies of the problem' under both tension and compression. Their 
results have shown good correlation with experimental data presented 
by Wu, et al. [18], and Cotterell [6]. In the present paper, the authors 
apply Wu's [29] strain failure criterion to analyze the angled elliptic 
notch problem under biaxial tension and compression. Discussion of 
the present analytical results in comparison with those of Ewing and 
Williams [11], Eftis and Subramonian [20], and Liu [27] is also pre
sented. 
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Fig. 1 The elliptic coordinate system 

Strain Failure Criterion 
The strain failure criterion proposed by Wu [29] can be stated as: 

the failure of a macroelement in a continuum is governed by a set 
of scalar failure criteria and a set of vector quantities which deter
mine, respectively, the failure conditions and the directions of the 
crack or failure plane. For brittle fracture, which is the nature of the 
initial crack extension of the angled elliptic notch problem [6,18], 
the criterion assumes that the material fails at the point when a 
scalar-valued function of the strain tensor, t, reaches a critical value 
K2, i.e., when 

fie) = K2 (1) 

and the crack plane is normal to the direction of the maximum 
tensile strain at the point. 

In the case of an isotropic material under small deformation, /(e) 
must be a function of the principal invariants of e [32]. Using Taylor's 
expansion and ignoring higher-order terms, equation (1) may be 
written as 

me\ + nei2 + en : (2) 

in which m, n, and K are material constants to be determined by ex
periments [29]; ei and en are the first and second principal invariants 
of the strain tensor, t; ?u = ci2 — 2en is the equivalent strain. It is re
marked that failure of materials is thus dependent upon the equiva
lent strain and the hydrostatic strain. 

It is convenient to express the foregoing criterion in terms of 
stresses. In the case of linear elasticity, equation (2) reduces to 

El 2 K-
+ • 

l k i 
K 0T 

1 
:o-n = (3) 

in which a\ and an are the first and second principal invariants of the 
stress tensor, a. The constant K = <TC/OT is greater than 1 for brittle 
materials; o r and ac are, respectively, the tensile and compressive 
strength for brittle fracture of a macroelement;1 and TC is the critical 
shear stress at brittle fracture of a thin-walled cylinder under torsion. 
These constants replacing m, n, and K of equation (2) represent ma
terial properties and are considered known in the analysis of the an
gled elliptic notch problem. The relations between m, n, K and or, TC, 
ac have been derived by Wu [29]. 

1 The second author has performed uniaxial compressive experiments using 
cubic PMMA specimens sandwiched between two heads in a setup discussed 
in Wu [29]. The results indicated that under very slow loading rate, the speci
mens failed by plastic deformation. However, at higher loading rates, brittle 
vertical cracks developed and the specimen failed in brittle mode. The strength 
of the aforementioned brittle fracture was very close to the measured yield 
strength under slow loading rate. 

MM II 

Xo-

Fig. 2 Plate with an angled elliptic notch under uniformly distributed biaxial 
edge loads 

The constants o r , <TC, and TC are easily determined for materials 
that exhibit linearly elastic behavior prior to fracture in tension. For 
materials which experience yielding prior to fracture in tension, such 
as cast iron, equation (3) is then not valid. A suitable constitutive 
equation needs to be substituted into equation (2) to obtain a fracture 
criterion in stress. The latter has been discussed by Valanis and Wu 
[33,34]. 

The Angled Elliptic Notch Problem 
In the present work, the elliptic coordinates, shown in Fig. 1 are 

used. The configuration of the angled elliptic notch problem under 
biaxial loading is shown in Fig. 2, in which @ is the angle from the main 
loading axis, 0-0', to the major axis of the elliptic notch measured 
positive clockwise, this will be called the "notch angle;" 8 is the angle 
from the major axis of the notch to the direction of the crack initiation 
measured positive counterclockwise, as will be called the "fracture 
angle." The notch surfaces are free of traction and a uniformly dis
tributed edge load is applied to the plate at a large distance from the 
notch. 

The concept of a critical neighborhood2 used by Wu and Chang [28] 
has been utilized in the analysis. They assumed that fracture is not 
governed by the stress at a point along the boundary of the notch, but 
by the stress state (equivalent to the analysis based on the strain state 
for linearly elastic materials) at a point on the outer contour of a 
critical neighborhood surrounding the notch. The introduction of the 
concept of critical neighborhood is necessitated by the technical dif
ficulty involved in the machining of a notch. Local irregularities and 
microcracks are known to exist along the boundary of a machined 
notch. Although Wu, et al. [18], showed that small local irregularities 
do not affect the site and direction of crack initiation and the crack 
initiation strength (i.e., the critical aCI for a crack to initiate on the 
boundary of the notch), the effective size of the notch is still different 
than the nominal size of the notch, and the idealized continuum so
lution stops short at the immediate neighborhood of the nominal 
notch boundary. 

In the analysis, the critical neighborhood is chosen as a confocal 

2 The concept of critical neighborhood is not new. Similar ideas have been 
used by Erdogan and Sih [1], Williams and Ewing [7], Kipp and Sih [15]. 
However, it should be mentioned that the critical neighborhood used here 
represents the effective notch boundary and is not stress level dependent. 
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Fig. 3 Theoretical results for biaxial tension, with K = 2, aT/Tc = 1-15, £0 = 0.1, ̂  = 0.2, and A varies 

90° 

ellipse, £ = £i, at the outer boundary of the elliptic notch, £ = £0, as 
shown in Fig. 2. For each loading case, the iteration procedures3 check 
the stress state at points along £ = £i and find the location and the 
magnitude of the maximum value of the scalar-valued function /(«). 
Crack initiation is predicted to occur at the particular point of max
imum /(«) when the stress state at the point satisfies equation (3). The 
direction of the crack initiation is perpendicular to the direction of 
the maximum principal strain at that point. In the present work, since 
the experimental data of Ewing and Williams [11] on thin-walled 
PMMA tubes is compared with analytical results obtained for the case 
of pure shear, material parameters, and the critical outer boundary 
previously used by Wu and Chang [28] for PMMA in tension are again 
used in the calculation. These parameters are K = 2, OT/TC = 1.15, 
£o = 0.1, and £. = 0.2. 

Further analyses are presented in the following paragraphs. 
A The Angled Elliptic Notch Problem Under Biaxial 

Loading. A graphical description of the angled elliptic notch prob
lem under biaxial loading is given in Fig. 2, in which a is the "main 

3 An arbitrary stress a is assumed to start the calculation in order to find the 
max f(a) along the contour of the critical neighborhood; where 

1(a) ._llfl}\K- 1 
;on K\aT\ ' K 

The value of a is then adjusted until such a = acr is found at a point on the 
contour where max/(<r) = 1. This determines both the strength and the direction 
of the crack initiation. 

axial load" which is positive for biaxial tension and negative for biaxial 
compression; Ac, the other axial load perpendicular to the direction 
of the major axial load a, where A can be either positive or negative, 
/3, the notch angle, and 6, the fracture angle, have been defined pre
viously. 

An exact solution of the elastic stress field can be obtained by su
perposition of the solutions found in Wu and Chang [28] for the uni
axial loading cases. As a result, the stress field becomes 

o"{{ + ff„ = 7iffe2S° cos 2/3 + ac[sinh 2£ (m — ne2t« cos 2/3) 

-ne 2 *°s in2 /3s in2n] (4) 

o"{{ — am = a2a[— sinh 2£ (m cosh 2£o ~ n cos 2/3) 

+ sinh 2£ cos 2rj(m — ne2^0 cos 2/3) 

— n e2f° sin 2/3 sin 2rj cosh 2£ 

- n e2«° sinh 2£ sinh 2(£ - £0) cos 2(?j - /3) 

- n e2«° sin 2?j cosh 2(£ - £0) sin 2(?j - |3)] 

+ 2naae2(o cosh 2(£ - £0) cos 2(i) - /3) (5) 

T{, = - a2a [(m — n e2fo cos 2(3) sin 2r\ cosh 2£ 

— sin 2t](m cosh 2£o — n cos 2/3) 

+ n e2«° sin 2/3 cos 2J? sinh 2£ 

+ n e2«° sinh 2£ cosh 2(£ - £0) sin 2(n - (3) 

- n c * sin 2r\ sinh 2(£ - £0) cos 2(r\ - /3)] 

- naoe^o sin 2 (JJ - /3) sinh 2(£ - £0) (6) 
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Fig. 4 Theoretical results for biaxial compression, with K = 2, O V T C = 1.15, £0 = 0.1, j - ! = 0.2, and X varies 

in which a = (cosh 2£ — cos 2?j)_1, m - 1 + X, and n = 1 — X. The 
aforementioned solution applies to biaxial tension when a is positive, 
and to biaxial compression when a is negative. 

Fig. 3(a) shows the theoretical curves relating the fracture angle 
to the notch angle for biaxial tension (where X varies from —8 to 
+100). These curves are comparable with those presented by Eftis 
and Subramonian [20] using the maximum stress theory on the angled 
crack problem under biaxial tension. It is noted that, in Fig. 3(a), the 
fracture angle for X = o> at notch angle /3 is equal but opposite in sign 
to the fracture angle for X = l/a> at notch angle (90° - /3), where <o > 
0. This correlation can be expected analytically because the biaxial 
loading configuration (Fig. 2) implies that at failure the stress states 
for the above two cases are antisymmetric with respect to the elliptical 
coordinate y\. The same correlation can also be expected if one uses 
the maximum stress theory. However, no such correlation can be 
obtained by checking the results for X = 0.5 and X = 2 in Fig. 20 of 
reference [20]. 

For the case of X = 1, the same stress is applied in all directions at 
the edge of the plate. Therefore, the stress state in terms of (£, r]) is 
the same for all values of /3, i.e., independent of (3; thus the fracture 
angle as well as the fracture strength must be the same for-all values 
of /3. The foregoing argument applies under both biaxial tension and 
compression. In the case of biaxial tension, with X = 1, the constant 
fracture angle, as shown in Fig. 3(a) is 0° (the same result is obtained 

by Eftis and Subramonian [20]) with the crack growth initiating at 
the tip of the notch, and the corresponding fracture strength is <rcr = 
0.1312 OT- Fig. 3(b) shows the fracture strength versus the notch angle 
for the case of biaxial tension, in which the fracture strengths have 
been normalized by dividing by 0.13121 or , the fracture strength for 
X = 1 in biaxial tension. 

Based on the same analysis, the angled elliptic notch problem under 
biaxial compression has also been studied. Figs. 4(a and b) show, re
spectively, the corresponding fracture angle and fracture strength as 
functions of the notch angle /? for X varying from -100 to +100. The 
correlation of the fracture angles between X = co and X = 1/oj, where 
to > 0, is the same as for biaxial tension. For the case of X = 1, the 
fracture strength and fracture angle are independent of the notch 
angle /? as in the case of biaxial tension. The constant fracture strength 
is o'er = 0.3889 <7T, which has been used to normalize the fracture 
strength shown in Fig. 4(6). The constant fracture angle has two 
values, ±89.36°, as shown in Fig. 4(a). Because of the symmetry of 
the stress distribution, fracture initiation occurs at two locations 
symmetrically disposed to the major axis near each end of the elliptic 
notch. The point with a positive rj coordinate leads to a fracture angle 
of +89.36° and represents a limiting case as X increases from 0 to 1. 
The other point leads to a fracture angle of -89.36° and represents 
the limiting case as X decreases from 100 to 1. 

It is remarked that a general analysis of the angled elliptic notch 
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Fig. 6 Theoretical results for pure shear case compared with the experimental data of Ewing and Williams [11] and Lin [27] 

problem using Wu's [29] theory has been presented in the foregoing. 
The results for the cases of uniaxial tension and compression, which 
have been shown previously by the authors [28] to provide good 
agreement with experimental data, can be obtained by setting X = 0 
and using appropriate material parameters, K (= a JOT), and orhc-
A special case called "the angled elliptic notch problem in pure shear" 
can also be deduced by setting X = — 1. Further discussion of this case 
is presented in the following section. 

B The Angled Elliptic Notch Problem in Pure Shear. The 
configuration of the angled elliptic notch problem in pure shear is 
shown in Fig. 5(a), in which the uniformly distributed edge load at 
infinity is a pure shearing stress T. Under the principle of superposi
tion, it can easily be shown that the resulting stress field for the con
dition of pure shear is analytically equivalent to that of the condition 

of biaxial tension or compression with X = —l.4 In fact, the case of /? 
= |8o in pure shear is equivalent to the case of /3 = 45° + /?o in biaxial 
tension with X = —1 or to the case of /? = /3o — 45° in biaxial com
pression with X = —1. This is clearly illustrated in Fig. 5(6). Therefore, 
the prediction of the fracture angle and fracture strength as functions 
of the notch angle, /3, for the case of pure shear can be obtained di
rectly from the appropriate curves presented in Figs. 3 or 4. 

A comparison of the present analysis with Ewing and Williams' [11] 
results is now presented. Fig. 6(a) shows the theoretical fracture angle 

4 The expressions for the stress field can be obtained by superposition of 
equations (4)-(6) or the Inglis solution [20]. 
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6 as a function of the notch angle /3 together with the experimental 
data obtained by Ewing and Williams [11]. Ewing and Williams [11] 
only examined cases of )3 ranging from 0° to 45° in their studies of the 
angled crack problem in pure shear and declared that the solution is 
symmetric with respect to the case of (3 = 45°. However, it is noted 
here that consideration of values of |8 ranging from only 0° to 45° does 
not include all possible cases of pure shear. A complete analysis should 
cover /3 from -45° to +45° as shown by the curve in Fig. 6(a). This 
argument is substantiated by the fact that the stress solutions ob
tained for different values of @ from —45° to 45° differs. 

Fig. 6(a) shows that, for small positive values of/3, the theoretical 
fracture angles are smaller than those obtained experimentally by 
Ewing and Williams [11]. It is noted that this is due to the fact that 
the present analysis is based on an elliptic notch rather than the slit 
crack used by Ewing and Williams [11]. The same tendency has also 
been observed both experimentally and analytically in the author's 
[17,18] studies on the angled elliptic notch problem in tension. It is 
further remarked that, in the present calculation, the fracture angle 
8 is relatively insensitive to the choice of £o-

The experimental data of Liu [27] using 7075-T-7651 Aluminum 
alloy specimens are also plotted in Fig. 6(a) for comparison. From the 
load-displacement traces presented by Liu [27], it is seen that linear 
elasticity is applicable in this case. Again, Liu's specimens were plates 
with slit cracks and the fracture angles d at small 0 are larger than 
those predicted by the present calculation. 

The theoretical fracture strength is represented by the curve of X 
= - 1 in Fig. 3(6) with /? replaced by /3 - 45°. This curve is again 
plotted in Fig. 6(6), but it should be noted that this curve cannot be 
directly compared with the data obtained experimentally by Ewing 
and Williams [11] where Tc,y/~Tra rather than r c r was plotted, since 
the value of the crack length la was not given in that report. In that 
study, the fracture strength was a function of the crack length, 2a, as 
a result of the stress state generated in the vicinity of a crack tip. In 
the present analysis, however, an angled elliptic notch rather than a 
slit crack is considered, and £0 = 0.1, yielding a constant ratio of 6:a 
» 0.1, which is used to represent the elliptic notch. As a result, the 
fracture strength is found to depend on the ratio 6/a. Fig. 6(6) is 
presented to show merely the same trend the calculated curve and the 
test results have. 

Caution must be exercised when the experimental results of Ewing 
and Williams [11] and Liu [27] are used to judge the validity of an 
analysis based on an infinite plate. The torsional experiments of 
Ewing and Williams [11] were performed on cylindrical tubes of 
PMMA of outside diameter 89 mm and thickness 6.35 mm. Since the 
crack length 2a was not included in the report, it suffices to mention 
that the size of the crack in the specimens must be sufficiently small 
that the effects of finite radius of curvature of the tube and finite size 
of the specimen can be neglected. Also, the effect of geometry should 
play a role in Liu's [27] data, since the crack length was quite large 
compared to the size of Liu's specimens. 

Concluding Remarks 
The angled elliptic notch problem under biaxial loading has been 

studied based on the strain failure criterion proposed by the second 
author [29]. Numerical results have been obtained for both biaxial 
tensile and compressive loading. Only in the case of pure shear, which 
is equivalent to biaxial loading with X = — 1, there is comparable ex-

• perimental data available in the literature. Further experimental data 
are needed to investigate fracture phenomena under biaxial loading. 
When X = 0, the present solution reduces to the case of uniaxial 
loading previously discussed [28], 

Five parameters (<TT, ac, TC, £o, and £i) are used in the analyses. The 
first three parameters are material constants which represent brittle 
fracture strengths under simple loadings. The last two parameters 
are dependent on the machining technique used to develop the notch 
and the material used for the specimen (see reference [28] for detailed 
discussion). 

Discrepancies found between the theoretical and experimental 
results are attributed to the difference generated between the elliptic 

Fig. 7(a) Angled elliptic notch problem under uniaxial tension (X = 0), with 
K = 2.0, <rrlTc = 1.15, £o = 0.1, and f , varies 

• S,-o.i 
•6.-O.I6 
• $ = 0.20 

£,=0.24 

30° 60° 
NOTCH ANGLE, /3 

Fig. 7(6) Angled elliptic notch problem under pure shear (X = —1) with K 
= 2, aT/Tc = 1.15, £0 = 0.1, and £1 varies 

notch used in the present analysis and the slit crack used in the ex
perimental work. It is believed that the critical neighborhood chosen 
for this analysis is reasonable for elliptic notched specimens. In ref
erence [28], the authors have presented good correlation to experi
mental data of Cotterell [6] in uniaxial compression, and Wu, et al. 
[18], in uniaxial tension. For plates with sharp slit cracks, the de
generated solution with £0 = 0 is not readily applicable due to the fact 
that under biaxial loadings, the notch surfaces are no longer free of 
traction. 

Under a variety of loading conditions, i.e., for various X's as 0 varies, 
the location of crack initiation moves smoothly along the notch 
boundary. Under certain conditions, however, with specific X's and 
when /3 is close to a critical value, the location of crack initiation 
changes abruptly from close to the notch tip to a point away from it 
as fl varies. This effect leads to the discontinuity of the fracture angle 
curves, for X = 0, 0.2, 0.25, 4, 5,100, as shown in Fig. 4(a). However, 
the values of the fracture strength does not discontinuously vary but 
rather varies smoothly as shown in Fig. 4(6). 

Figs. 7(a and 6) show, respectively, the analytical prediction of the 
variation in fracture angle for pure shear (X = —1) and biaxial tension 
with X = 0 (uniaxial), as the critical neighborhood £i varies. This il-
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l u s t r a t e s t h e d e p e n d e n c e of the f racture angle on t h e choice of t h e 

contour, £ = £1. T h e value chosen for £1 is re la ted to the mate r i a l and 

t h e t e chn ique used t o c rea te t h e no tch . 

In conclusion, t h e p r e s e n t t heo ry p red ic t s t h a t u n d e r t h e s a m e 

loading configuration, fracture ini t iat ion will be affected by mater ia l 

propert ies . T h i s effect arises directly from t h e considerat ion t h a t for 

different mate r ia l s t h e values of t h e p a r a m e t e r s <rc, o r , a n d TC u sed 

in the theory are different . As an example for i l lus t ra t ion, consider 

t h e case of biaxial compress ion wi th X = 1. Ear l ie r in t h e t e x t a value 

of K = 2 y ielded a f rac ture angle of ±89 .36° . However , a va lue of i f 

= 6, su i tab le for a different t e s t mater ia l , will yield a f rac ture angle 

of ±42.79° wi th f racture in i t ia t ion located away from t h e t i p of t h e 

elliptic no tch . 
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An Analysis of Delamination in 
Angls-Ply Fiber-Reinforced 
Composites1 

A study of the mechanics and failure modes of delamination initiated from a surface flaw 
in angle-ply fiber-reinforced composites is presented. The analysis employs a hybrid-
stress finite-element method including a crack-tip singular element with its field vari
ables expressed by Muskhelishuili's complex stress functions. Solutions are obtained for 
the delaminated composites with various laminate parameters. The results elucidate 
unique and important characteristics of delamination crack-tip response and interlami-
nar stress transfer mechanisms. Of particular interest are the mixed-mode stress-intensi
ty factors associated with the delamination crack. The influence of ply orientation on K\ 
and K\\ and their effects on subsequent crack extension are discussed. 

Introduction 
Among various kinds of damage in fiber-reinforced composites, 

delamination often causes greatest concern. It is one of the most fre
quently encountered types of damage during service and may intro
duce serious failure problems in composite structures. The presence 
of delamination cracks may result in a progressive stiffness reduction, 
structural disintegration, and material degradation, which may lead 
to the final fracture of the composites. Examples of the delamination 
failure have been shown in many engineering applications of com
posite materials such as missile motor cases, composite engine fan 
blades, laminated pressure vessels, and aircraft composite compo
nents. Thus understanding the damage behavior of this kind is of 
fundamental importance in the analysis and design of composite 
structures. 

Delamination has been observed as a matrix dominated failure 
mechanism occurring in resin-rich interlaminar regions. It takes the 
form of separation of plies and is commonly initiated at geometric 
boundaries, manufacturing defects, and service-induced-damage. 
Since the interlaminar strength is very low and interlaminar stresses 
are usually high, failure in composites generally tend to develop in 
a delamination mode at a very low nominal stress level. The devel-

1 Presented in the session on Aerospace Composite Materials at the 1978 
ASME Winter Annual Meeting in San Francisco, Calif., December 12-15, 
1978. 

Contributed by the Applied Mechanics Division for publication in the 
JOURNAL OP APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N. Y. 
10017, and will be accepted until June 1, 1980. Readers who need more time 
to prepare a discussion should request an extension from the Editorial De
partment. Manuscript received by ASME Applied Mechanics Division, August,. 
1978; final revision, June, 1979. 

opment of a through-the-thickness crack from a defect or flaw in a 
real composite laminate may be difficult in many cases. This is a 
phenomenon unique to composites and is not commonly found in 
metals and polymers. The consequence of delamination in the per
formance of fiber composite structures has long been recognized. But 
research progress has been relatively slow as unanticipated delami
nation cracking occurs in numerous cases. The major difficulties arise 
from the inherent heterogeneity and anisotropy of the material, the 
through-thickness variation of ply properties and lamination effects, 
the complex crack geometry, and the associated crack-tip stress sin
gularity. Early work by Kies [1] and Kulkarni, et al. [2] employing a 
critical energy release rate approach based on the fracture mechanics 
concept studied the fundamental nature of the problem. Erdogan and 
Arin [3] and several others [4-7] conducted interface crack analyses 
to examine the complex interface crack-tip stress singularity. Ex
perimental studies by Im, et al. [8], Pipes and Pagano [9], and Sen-
deckyj, et al. [10], found unique characteristics of the delamination 
behavior in composites. Recent results reported by Wang, et al. [11, 
12] provided further information of the crack-tip stresses and growth 
of a delamination under static and cyclic loading. However, many 
fundamental problems associated with delamination still remain 
unclear, especially in the cases of a delamination crack initiated from 
a service or manufacturing-induced flaw, since these real-life cracks 
in composites are characteristically difficult to analyze. 

This paper presents an investigation of delamination emanating 
from a surface notch in angle-ply laminates subjected to in-plane 
nominal loading. The objective of this study is to examine the basic 
failure mechanics and mechanisms of delamination in the composites. 
Due to the aforementioned complexities of the problem, a numerical 
method, based on advanced hybrid-stress finite-element formulation, 
is introduced. This method, pioneered by Pian, et al. [13], can over-
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come these difficulties and provide accurate solutions with rapid rates 
of convergence. It also enables an accurate description of the crack-tip 
response by incorporating a singular hybrid crack-tip element into 
the analysis to model more precisely the delamination crack. The 
crack-tip element is formulated by Muskhelishvili's complex stress 
functions, including the singular and higher-order terms. The analysis 
is capable of solving very complicated composite crack problems and 
is particularly suitable for the current study. Typical results, illus
trating the fundamental behavior of a delamination crack in the 
angle-ply composites, are presented and discussed in the paper. 

M a t h e m a t i c a l M o d e l and Assumpt ions 
Since microscopic observations indicated that delamination is a 

matrix-dominated, progressive failure mechanism occurring in an 
interlaminar resin region, the composite laminate is modeled as an 
assembly of anisotropic plies bonded by thin layers of interply resin. 
Each fiber-reinforced ply of thickness to has its material axis oriented 
with an angle 0; from the loading direction. The resin interlayer is 
assumed to be isotropic and to have a uniform thickness t\. The plies 
are perfectly bonded in the laminate everywhere except in the region 
where a delamination is initiated from the surface notch tip. The crack 
geometry and the laminate configuration are conveniently expressed 
by {61//62/0affli • • •), where the double solidus and the underline 
represent the location of the delamination and the penetrated depth 
by the surface notch, respectively. The delamination crack of length 
Id is modeled as a flaw completely embedded in the resin interlayer 
as shown in Fig. 1. Studies on other extreme cases such as a crack lo
cated in a vanishing interlayer or at a ply-interlayer interface, giving 
a more complicated oscillating three-dimensional stress singularity, 
are reported elsewhere [14]. 

M e t h o d of Ana lys i s 
The general procedure of analyzing the plane delamination crack 

problem in composites is described briefly in this section. Details of 
formulation for the crack-tip superelement and surrounding 
nonsingular hybrid elements can be found elsewhere [13,15] and are 
not repeated here. Briefly, the formulation of the crack-tip element 
is based on the variational principle of modified complementary en
ergy. The functional to be minimized has the form expressible in terms 
of both unknown displacement and stress fields in the element and 
prescribed boundary tractions and displacements along segments of 
the element boundary. Following Muskhelishvili's formulation [16], 
the stress and displacement fields are expressed in terms of two stress 
functions, 4>(z) and fiz), of a complex variable z = x + iy by 

<ryy+o-« = 2[0'(z) + 0''(z)] 

a xx + 2iff* 2[z<j,"(z) + i/-'(z)] 

and 

2G(u + iu) = n<t>(z) - z<t>'(z) - IZ'(Z), 

(1) 

(2) 

(3) 

where G is the shear modulus, and r\ is a plane stress or a plane strain 
parameter. A function a>(£) is then introduced to map the singular 
crack domain to an analytical plane, where z = uj(i-) = £2. The func
tions $(£) and i^(£) are analytical and can be interrelated through 
traction boundary conditions along crack surfaces. In the crack-tip 
superelement formulation, </>(£) is assumed to have the form 

and the function \p(^) may be obtained as 

bj(-i)J + -jbj V 

(4) 

(5) 

where bj = /3y for a symmetric case or b; - /3y + i|8n+y for a nonsym-
metric case and @s are real constants to be determined. Using equa
tions (4) and (5), the stress and displacement fields in equations 
(l)-(3) may be expressed in terms of the stress coefficients (Is. The 
boundary traction T can be calculated by T; = aijVj. Interpolating 
boundary displacements u by nodal displacements q and inserting a' 
and T into the variational formulation, the crack-tip element stiffness 
matrix can be obtained. 

Stiffness matrices of surrounding nonsingular elements are for
mulated by a conventional hybrid-stress finite-element method [17] 
through the variational principle of minimum complementary energy. 
Anisotropic elastic properties of each composite lamina are considered 
in the analysis by introducing an appropriate compliance matrix in 
the element stiffness formulation. Since boundary displacement 
functions are independently assumed for the crack-tip superelement 
and for the nonsingular elements, interelement compatibility can be 
insured by a suitable choice of interpolation functions. 

The assembled governing equations for the whole system may be 
written as 

Kq = Q, (6) 

where K is the global stiffness matrix, and Q, the consistent loading 
vector. After solving q from equation (6) by an appropriate solution 
scheme, the stress field can be determined from material constitutive 
equations. Stress-intensity factors, K\ and K\\, for a given delami
nation crack geometry may be found from 

Ki = V2i rA 

and 

Ku = V2¥/3n 

(7a) 

(7b) 

The associated elastic energy release rates G\ and Gii can be obtained 
by a standard computational scheme. 

A c c u r a c y and C o n v e r g e n c e of So lut ions 
Accuracy and convergence assessments of solutions are complicated 

by several unusual features of the problem and of the method of 
analysis due to the singular nature of the delamination crack. A study 
of the accuracy and convergence of the analysis and the solution 
stability has been conducted by testing cases for which independent 
solutions are available. Excellent agreements between the results 
obtained from the current analysis and existing closed-form solutions 
were observed. Current results indicate that accuracy within ap
proximately one percent of the converged solutions of K\ and K\\ can 
be achieved by the optimum mesh arrangements used in the present 
study. Details of this information can be found in [15]. 

R e s u l t s and D i s c u s s i o n 
Solutions for symmetric four-ply (6//-6/-0/8) composites are re

ported in this section to elucidate fundamental mechanics and 
mechanisms of the delamination and to illustrate the complex effects 
introduced by ply (or fiber) orientations. The results are compared 
with the reference solution obtained for a delaminated unidirectional 
composite. Studies on the composites consisting of more plies and/or 

. with more complicated laminate configurations were conducted also 
and were reported elsewhere [12,18]. Material elastic constants typical 

Journal of Applied Mechanics MARCH 1980, VOL. 47 / 65 

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



tj,+1.5tj 

to+0.5t i 

s 
I 
o 

0.5 t , 

0.00 

1.68 

> i 5 ^ / N H , 6 8 
3 - 6 ? ^ ^ ^ ^ N . < 

-o. 32 ^ ~ ~ - \ 

< ( a i 8 

i 1 i 

I 

^ 2 . 1 8 

^0.18 

v — 

\ ^ _ _ a e > 8 

T).1B 

t i 4 ^ 6 8 

" " " - V - Q ^ 

1 
0.00 0.02 0.04 0.06 

DISTANCE AHEAD OF CRACK TIP, X / L 

0.00 0.02 0.04 0.06 

DISTANCE AHEAD OF CRACK TIP, X/L 

Fig. 2 Longitudinal stress contours <jsxl (Too near delamination crack tip In Fig. 3 Transverse normal stress contours <JZII (Too near delamination crack 
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Table 1 Materials elastic constants used In analysis 

a. Graphite/Epoxy Lamina 

E L L = 138 GPa (20.00 x 10
6 psi) 

ETT = EZZ = 1 4 - 5 G P a ( 2 , 1 0 X 1 0 6 p s ± ) 

GLZ = GTL = 5 - 8 7 G P a ( 0 - 8 5 x 1()6 p s ± ) 

VTL = VLZ " VTZ " °"21 

b. Interlaminar Epoxy Layer 

Em= 3.45 GPa (0.50 x 10
6 psi) 

Gm= 1.28 GPa (0.185 x 10
6 psi) 

v = 0.35 
m 

of high modulus graphite/epoxy systems for aerospace applications 
are used in the present computation (Table 1). The graphite/epoxy 
lamina in the analytical modeling has a dimension of 0.01 in. The 
interlaminar resin layer has a uniform thickness of one-tenth of the 
individual ply thickness as observed under the microscope. The length 
of the delamination crack is assumed to be three times the ply 

0-00 0.02 0.04 0.06 

DISTANCE AHEAD OF CRACK TIP , X/L 

thickness. The surface notch penetrates through one ply thickness Fig. 4 Interlaminar shear stress contours <r«/ <r„ near delamination crack 
from the outside, as shown in Fig. 1. tip in (30° / / -30° / -30 o / 30° ) graphite/epoxy 
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Fig. 5 Effect of fiber orientation on stress-intensity factors in (dll-Ol—dld) 
graphite/epoxy 

The response of the composite subjected to delamination may be 
best illustrated by examining the crack-tip stress field. The com
puter-plotted isostress contours, shown in Fig. 2, give the in-plane 
longitudinal stress distribution axJa„ around the delamination crack 
tip in a commonly used (30°//-30°/-30°/30°) graphite/epoxy. The 
plot provides a graphic representation of the numerical solution and 
reveals several important features of the problem: the localized and 
intensified crack-tip stress field within the interlaminar region, the 
high stress concentration in adjacent plies, and the complex transfer 
mechanisms of interlaminar stresses in the delaminated composite. 
Figs. 3 and 4 show the distributions of interlaminar shear and 
transverse normal stresses near the crack tip. Both stress components 
reach extremely high levels within the thin interlaminar layer as the 
crack tip is approached. They extend continuously through the 
laminate thickness and attenuate gradually in the neighboring plies. 
A more accurate description of the near-field stresses may be achieved 
by plotting the stresses versus the distance away from the crack tip 
on logarithmic coordinates. Straight lines with a slope of —1/2 are 
obtained, indicating a classical fracture mechanics 1/y/T singularity. 
Amplitudes of the near field stresses may be characterized by the 
mixed-mode stress-intensity factors computed from equations 7(a 
and b). 

For a given loading condition and crack length, K\ and Ku are re
lated directly to the ply configuration and the laminate geometry. Fig. 
5 provides quantitative information of K\ and Kn in ((V/-0/-0/0) 
composites. A rapid increase in the stress intensity factors is observed 
as the ply orientation changes from the unidirectional configuration. 
K\ and Kn for the laminates with 8s greater than 45° are found to be 
approximately three times larger than those obtained from a unidi
rectional case. Also note that the opening mode stress-intensity factors 
are of the same order of magnitude as those of the shearing mode. The 
stress-intensity factor solutions are of particular importance in 
characterizing and controlling the delamination fracture behavior of 
high-strength brittle composite laminates such as the graphite/epoxy 
system, since they may dominate subsequent crack extension in the 
composites subjected to a monotonically increasing load or a cyclic 
fatigue condition. It is essential to obtain accurate information of K\ 
and Ku for the analysis and prediction of mixed-mode interlaminar 
crack extension in multilayered composites. Using the stress-intensity 
solutions obtained from the current analysis and an appropriate 
mixed-mode fracture criterion such as the critical energy release rate 
criterion, 

G\ + Gu - Gc (8) 

30 45 60 75 
FIBER ORIENTATION, S* DEGREES 

90 

Fig. 6 Effect of fiber orientation on stress-concentration factors adjacent 
to crack tip at x = 0 and z = 0.5li, in (d//—0/—6/d) graphite/epoxy 

,KiJ UiJ 1, (9) 

which can be expressed in terms of the delamination crack-tip 
stress-intensity factors [19, 20] as 

where Kic and Knc are the critical mode I and II stress-intensity 
factors, it has been shown [21] that the delamination crack growth 
behavior in a unidirectional glass/epoxy composite can be predicted 
accurately. Moreover, mixed-mode cyclic stress-intensity ranges for 
a laminate subjected to fatigue loading can be determined by the 
analysis also and have been used successfully [21] in the study of fa
tigue crack propagation of delamination in the composite. 

The redistribution of laminate stresses caused by the interlaminar 
crack has a significant effect on the deformation and fracture of the 
composite. For example, the compressive in-plane stress developed 
in the lower crack flank may introduce severe local buckling of the 
delaminated plies in the vicinity of the surface notch. This surface 
buckling phenomenon has been observed and reported in [10]. The 
nonuniform stress distributions through the laminate thickness, 
shown in Figs. 2-4, suggest that the classical laminate theory may be 
inapplicable in the region near the delamination crack. Numerical 
results indicate that maximum stress concentrations almost always 
occur at the interlayer/ply interface adjacent to the delamination 
crack, i.e., at x = 0 and z = 0.5ti, for all ply configurations studied. 
Fig. 6 gives the change of stress-concentration factors (crij)mex/<r„ as 
a function of the fiber orientation. While the ply logitudinal strength 
decreases rapidly as the fiber orientation 6 is altered, the in-plane 
stress concentration at the noted position remains relatively the same. 
The spontaneous but opposite changes in ply strength and stress 
concentration may introduce a transition of failure modes from in
terlaminar to intralaminar fracture in the composite during crack 
growth. This behavior has been noted by several investigators [12,22, 
23]. Furthermore, the presence of the delamination may be detri
mental to the durability of the material in an adverse environment, 
such as moisture and corrosive chemicals, because not only does the 
delamination crack reduce the structural stiffness, but also the stress 
concentration near the crack surfaces enhances the rate-dependent 
degradation process in the composites [24]. 

Effects of lamination of composites on stress transfer mechanisms 
around the delamination crack can be depicted also by examining 
crack-tip stress contours in the composites with various fiber orien
tations. Figs. l(a and b) give a clear description of the in-plane lon
gitudinal stress for two different cases, (0°//0°/0°/0°) and 
(450//-45°/-45°/45 I>) graphite/epoxy. The difference between stress 
distribution patterns as shown in the figures delineates the distinct 
responses of the material to the delamination crack when the fiber 
orientation is altered. Figs. 8 and 9 provide better pictures of the ply 
orientation effects on the interlaminar stress transfer mechanisms. 
The interlaminar stresses exhibit higher values through the laminate 
thickness near the delamination in the angle-ply composite and ex-
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Fig. 9 Effect of ply orientation on interlaminar shear stress distribution oxzl<Ja, near delamination ciack tip in graphite/epoxy composites 

tend farther in neighboring plies than those observed in a unidirec
tional case. The results also indicate that interlaminar stresses in the 
unidirectional composite are more localized within the interlaminar 
region than those in the perturbed domain of angle-ply laminates. 
Furthermore, the complicated stress transfer mechanisms reveal that 
failure modes and subsequent growth of the delamination crack may 
be more complex in nature in angle-ply composites. 

Limita t ions of C u r r e n t S tudy 
It should be noted here that several geometric and material com

plications in the composites have not been included in the current 
analytical modeling, such as the nonuniformity of the thickness of 
interlaminar resin regions, the heterogeneity-of fiber and matrix 
phases, and other kinds of defects (e.g., voids, inclusions, etc.). These 
complications are statistical in nature and almost always exist in the 
material. Their presence may have significant effects on the delami
nation behavior, but this has not been fully explored yet. The anti-
plane mode of deformation and fracture (mode III), which may have 
an important contribution to the progressive failure of the composites, 
especially in angle-plied laminates, has not been examined in this 
work. A recent study on edge delamination [14] revealed that the mode 
III component of the crack-tip deformation is indeed very significant 
and that it may be primarily responsible for the interlaminar failure 
of the composites. 

S u m m a r y and Conc lus ions 
An analysis for investigating delamination in angle-ply composites 

has been developed. The composite laminate was modeled as an as
sembly of anisotropic homogeneous plies bonded by thin resin in-
terlayers. The delamination crack was assumed to be initiated from 
a surface notch in the form of broken plies and located in an inter
laminar region. A hybrid-stress finite-element analysis, including a 
special crack-tip element formulated by Muskhelishvili's complex 

stress functions, was used to examine the failure mechanics and 
mechanisms of the delamination. Convergence and accuracy of the 
analysis were affirmed by comparing current results with existing 
closed-form solutions. 

Solutions for the delaminated (6_//—8/—6/8) graphite/epoxy com
posites were obtained. The results reveal the fundamental nature of 
delamination in fiber-reinforced composite laminates: a localized 
singular stress field in the delamination crack-tip region, large stress 
gradients in the adjacent unbroken plies, complex interlaminar stress 
distributions and transfer mechanisms through the laminate thick
ness, and the comparable and relatively high magnitudes of Ki and 
Ku associated with the delamination. The change in fiber orientation 
significantly alters the mixed-mode stress-intensity factors and the 
stress concentrations by a factor of approximately three. The rapid 
decrease in the ply axial strength coupled with the increase in inter
laminar stresses and the relatively constant in-plane stress component 
due to the alternation of fiber orientation suggest a possible transition 
of failure modes in the subsequent growth of the delamination crack 
in angle-ply laminates. The highly nonuniform stress distributions 
through the laminate thickness indicate the inapplicability of the 
classical laminate theory near the delamination crack-tip region. 
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Fabrics: Orthotropic Materials With 
a Stress-Free Shear Mode 
A material model of elastic fabrics is proposed. In this, orthotropy and a vanishing shear 
rigidity is assumed. Full nonlinear equations are derived and simplifications valid for 
small material rotations are proposed. Even the simplified model is nonlinear, but it is 
demonstrated that, in certain instances, a linearization, leading to harmonic equations, 
is admissible. This is exemplified by the case of a crack in an infinite sheet. 

Introduction 
Fabric is applied as a structural material in many instances, tents,. 

inflatable halls, and sails to mention a few. Also laminated cord-rubber 
as used in tires and hoses have a fabric-like structure. Nevertheless 
it seems that these materials have not been given much consideration 
from the point of view of applied mechanics. Certainly a number of 
papers to be found mainly in Textile Research Journal and Journal 
of the Textile Institute deal with mechanical aspects of deformation 
of textiles, but as far as the theoretical papers are concerned emphasis 
is generally on the complications involved in accounting for a maxi
mum of material and geometrical nonlinearities rather than on 
stripping the material models of secondary effects in order to bring 
out clearly the distinguishing features of a simple, yet reasonably 
realistic, model. Furthermore, the interest seems to have been con
fined to tnacroscopically homogeneous modes of deformation, whereas 
formulating and solving boundary-value problems for textile struc
tures has not yet been accomplished. 

The prominent distinguishing feature of textiles when viewed as 
anisotropic materials is their almost total lack of rigidity in shear-
mode deformations not involving stretching of the yarns. This prop
erty accounts for the willingness with which these materials adapt to 
three-dimensional double curvature surfaces such as those of the 
human body. It is obvious from simple theoretical considerations, and 
it is also acknowledged, although not always explicitly, by experi
mentalists. A substantial number of investigations reported have been 
concerned either with force-elongation relationships under stretching 
of the yarns or with the mechanical behavior in shear, e.g. Kawabata, 
Niwa, and Kawai [1], whereas investigations combining the two as
pects are rather scarce. However, experiments of Hearle and Ste
venson [2], mainly concerning nonwovens with more or less randomly 
laid fibers but including also a woven rayon fabric, of Sengupta, De, 
and Sarkar [3] on woven cotton fabrics, and of Clark [4] on cord-
rubber laminates all confirm the expectation of a low shear ri
gidity. . 

Contributed by the Applied Mechanics Division for publication in the 
JOURNAL OF APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N. Y. 
10017, and will be accepted until June 1,1980. Readers who need more time to 
prepare a discussion should request an extension from the Editorial Depart
ment. Manuscript received by ASME Applied Mechanics Division, October, 
1978; final revision, May, 1979. 

We believe that a deformable orthotropic plane behaving elastically 
in stretching along the two orthotropic directions and capable of a 
stress-free deformation in shear along these directions provides a 
realistic model for deformation of a fabric with orthogonally disposed 
yarns. The displacement functions are monovalued in accordance with 
the assumption that no slippage occurs at yarn crossovers. This is 
realistic in wovens if a sufficient friction is available, in nonwovens 
with bonded orthogonal fibers, in PVC-clad fabrics, and in laminates 
of cord-reinforced rubber. 

Such severe anisotropy is not encountered in current theories of 
elasticity, and, therefore, these materials require special consideration. 
Governing equations are derived in the present paper, and it is dem
onstrated that even if the material is linearly elastic (in some sense) 
a complete linearization of the problem is usually not permissible. A 
simplified, but still nonlinear, version of the governing equations is 
presented on the basis of an assumption of small yarn rotations, and 
it is demonstrated that problems in which constancy of the normal 
stress in one of the orthotropic directions is to be expected may be 
reduced to harmonic ones. This is very similar to the linearization 
involved in string and membrane problems, and it is illustrated by 
a simple example involving an infinite sheet with an isolated crack 
parallel with one of the orthotropic directions. 

The General Theory 
The structure of a material element in the stress-free reference state 

and in some deformed state is illustrated in Fig. 1. Warp and weft, 
labeled 1 and 2, respectively, are originally orthogonal and parallel 
to the axes of a fixed Cartesian coordinate system. Mutual sliding of 
yarns is prevented through friction, bonding, or otherwise. 

Coordinates x„ (a - 1, 2) of a material point in the undeformed 
configuration are changed to y„ through the deformation. Taking y„ 
to be functions of xi and ]t2a line element dxa transforms into 

dya = Fa (1) 

where, with /3 = 1, 2, the summation convention is adopted, and the 
deformation gradient 

F„fi = ya (2) 

has the partial derivatives of y„ with respect to xp as its compo
nents. 
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Fig. 1 Undeformed and deformed configurations of a material element 

In the deformed configuration the yarns are rotated anticlockwise 
through angles 0„ and are stretched in ratios X„. Hence the defor
mation gradient has components 

nFl2\ _ / ^ i cos 0 i - X 2 sin (fe\ . . 

21 F22I U l Sin 01 X2 COS 02/ 

F 

F21 

The fiber forces are statically equivalent to nominal tractions (i.e., 
forces per unit of length as measured in the undeformed configura
tion) of magnitude Na directed along the yarns. Hence the compo
nents of Piola stress Sap are 

L cos 0i Ni sin 0i 

1 sin 02 N2 cos 02, 

Balance of forces requires 

Sas,a = 0, (5) 

/ S 1 1 S 1 2 W iVicoi 

VS21S22) \-iV2 sir 
(4) 

and this is identically satisfied with the introduction of stress func
tions Ha through 

&a8 * f « 7 « i ay*~* /3,Y (6) 

where 7 = 1, 2 and eay is the two-dimensional permutation symbol. 
Physically, H„ is, at a given point, the a-th component of the internal 
force acting on any curve connecting the point in question with some 
fixed point, where Ha is preassigned the value zero. Balance of mo
ments entails the symmetry relation 

t aySyfl — FpySya m 
and is automatically satisfied. 

Taking the material to be elastic, a stress potential W(\i, X2) exists 
such that 

Na = 
dW 

(8) 

consistent with the expression, derivable from (3) and (4), for the rate 
of working per unit of original area 

•S„flFfl, •Na\a (9) 

Eliminating F„g, Sa$, and 0„ from equations (2)-(4), and (6) we 
arrive at the following set of equations: 

H Nl H N* 
"1,2 - T - y i , i ; - " i , i — ~r~yi,2\ 

Ai A2 
"2,2 = T~y2,l! "2,1 = - T~y2,2, 

Xi X2 
(10a-d) 

where N„ = Na(\i, X2) (equation (8)) and 

Xi = V(yi,!)2 + (y2,i)2; X2 = V(y l i 2 ) 2 + (y2,2)2 ( l la ,6) 

Alternatively we may take X„ = X„(iVi, N2) and 

N i = V(Hi,2)2 + (H2,2)2; N2 = V(Hi, i)2 + (H2,i)2 (12a, b) 

Elimination of H„ or y „ from equations (10) results in a system of two 
2nd-order partial differential equations, viz., 

'Ni 

X 
'l ) J ^ 2 ') n 
- y i , i + — yi,2 = 0 ; 
1 /,i U2 A2 

SniL+(SywL"0 , 

£ffj + (£»«,) =0; 
N2 It UVi 1,2 

$MAwA,-°-

(13a, b) 

(14a, ft) 

Boundary conditions may be given in terms of displacements (y„ — 
xa) or tractions. It is recalled that Ha equals the resultant force acting 
on that part of the boundary which is contained between a fixed point 
(where we may set Ha = 0) and the point where Ha is assigned its 
value. However, traction boundary conditions may be given in terms 
of y„ and displacement conditions in terms of Ha as 

iVi N2 dHt 
— y n i l + — y 1,212 = ——, 
Xi X2 as 

N1 N2 dH2 
— y2,wi + — y2 ,2"2 = ——, 
Ai A2 as 

A z H _•_ A i v dyi 

" l . l f l l H Jti\ 2^2 = ', 
N2 N i ' ds 
A2 ir _L A l u rf^2 

— «2,l1l + — «2,2"2 = —. 
N2 Ni ds 

(15a) 

(156) 

(16a) 

(16ft) 

Here, ds is the line element of the undeformed boundary curve, and 
na is its outward unit normal. It is noted that dHJds represents the 
nominal traction on the boundary. 

Not addressing the question of existence of solutions directly we 
mention that boundary conditions for which no solution exists may 
easily be constructed, e.g., the specification «u > 0, S12 = 0, S21 = 0, 
S22 < 0 is clearly inadmissible for a rectangular sheet with edges par
allel with the coordinate axes. Taking S22 = 0 instead of s22 < 0 it is 
obvious that a solution exists but is nonunique. Apart from rigid-body 
motions, any shear field y\ = yi(x2) may be superposed on the solu
tion. 

To gain further insight in this aspect, consider the expression for 
the potential energy of the system, 

F= f W(\lt X2)dS - <£ ^ypds, (17) 

assuming for simplicity dead loading (i.e., dHJds is constant during 
any deformation. Here, dS is the surface element of the undeformed 
configuration. The surface integral is extended over the region Q oc
cupied by the structure, and the line integral is taken over that part, 
TT, of the boundary curve T, where tractions are prescribed. Dis
placements, and thereby yp, are prescribed on the remaining part of 
the boundary curve Ty = T — IV. Stationarity of F with respect to 
variations of yp vanishing on Ty implies, and is implied by, the equi
librium conditions (13) and (15). Stability requires that F attains a 
minimum at the stationary point. Let the quantities introduced so 
far pertain to an equilibrium state, the stability of which is on trial, 
and let the corresponding quantities in any other configuration be 
denoted by starred symbols. The excess potential energy 

F*-F- / |W(Xi*, X2*) - W(Xj, \2))dS - fSap(yp* - y ^ d s 

may, with aid of the divergence theorem, be written as 

F*-F= f{W(\!*, X2*) 

- W(\i, X2) - iVi(Xi* - Ai) - iV2(X2* - X2) 

+ JViXi*[l - cos (0i* - 0i)] 

+ iV2X 2 *[ l -cos (02*-0 2 ) ] | dS . (18) 

The convexity condition 
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W(Ai*. A2*) - W(XU A2) - Nt(Xi* - Ai) - N2(M* - A2) > 0, 

(19) 

with equality only for A„* = A„, is an expression of material stability. 
It is equivalent to positive-definiteness of the quadratic form 

Cap\p\a 5: 0 

(equality only for \a = 0), where 

d2W 

(20) 

(21) 
dA„dA(3 

are the instantaneous rigidities. The condition (20) is equivalent to 

C n > 0 ; C 2 2 > 0 ; C n C 2 2 - (Cj2)2 > 0. (22o-e) 

If these conditions are satisfied pointwise and if, furthermore, the 
solution has 

Ni > 0; N2 > 0 (23a, 6) 

everywhere, except possibly for a region of zero measure, such as a 
boundary, then the solution is stable since in that case the functional 
(18) is positive definite. 

It is emphasized that conditions (23) suffice to prevent in-plane 
buckling of the structure. It is likely that avoidance of out-of-plane 
buckling and buckling of single fibers is also insured by (23). 

A p p r o x i m a t e E q u a t i o n s 
The approximation 

Ai = yi.il A2 = y2]2 (24) 

is justifiable if rotations 4>i and <j>2 are small in the sense that (0i)2 « 
1 and (02)2 « 1. With (24) equations (10) simplify as follows: 

H1,2 = JV1; H1A 
' A2 

yi,2i 

H 2,2 ' 
Ai 

y2.1i #2,1 = -Ni. (25a-d) 

A complete linearization leads to the somewhat trivial result that Na 

should be constant along the respective fibers. It is obviously inad
missible if different stress boundary conditions are prescribed at both 
ends of the yarns. Equations (25) still bring out the crucial property 
of the material that forces can be transmitted between the yarns. 

If the approximation (24) is admissible and the constitutive equa
tions decouple with JVi linear in Ai, 

JVi = Ci(Ai - 1); N2 = N2(\2), 

and if, furthermore, the boundary conditions admit 

y2,i = 0; y2 |2 = A2 = constant, 

hence 

H 2,2 = 0; H2,i = ~N2
 = constant, 

(27a, b) 

(28a, b) 

then equations (25a, b) reduce to a set of linear differential equations 
in the unknowns y\ and Hi, viz., 

N2 
Hh2 = C i ( y u - 1); ff!,i = - — yi,2. 

A2 

(29a, 6) 

With the transformations 

xi = x; x2 = V 
CiA2 

y i : : + u; Hi = V • 
CiiV2 

equations (29) reduce to the Cauchy-Riemann equations 

du du dv du 

dy dx dx dy 

Thus 

(30a-d) 

(31a, 6) 

z = x + j'y, (32) 

where i is the imaginary unit, is the complex argument of a holo-
morphic function 

w(z) = u(x,y) + io(x,y). (33) 

A typical situation, if not the only one, in which this quasi-linear-
ization is admissible, is one in which the yarns of system No. 2 have 
identical material properties and pass unbrokenly through the 
structure between straight, parallel boundaries where either equal, 
but oppositely directed, constant 2nd components of traction or 
constant 2nd components of displacements are prescribed. 

A n E x t e n d e d S h e e t With a n I so la ted Crack 
Consider an infinite sheet of fabric with a crack of undeformed 

length 11 cutting the yarns of system No. 1. The crack tips are taken 
to be at (x\, x2) = (0, ±/). The tension is constant at infinity with 
rotations 4>i and 4>2 tending to zero, hence 

s u —JVi°; s12 — 0 ; s2i — 0 ; s22-*N2°° for (xi, x2) ->- ±<=° 

(34a-d) 

with Ni°° and Af2" prescribed. The constitutive equations are assumed 
to be of the form (26). 

Boundary conditions at (xi, x2) = ±<» concerning s2 a are satisfied 
with (28), hence 

N2 = JV2- (35) 

and the quasi-linear version of the theory described in the previous 
section is applicable. Since 

Ni 
Hi — Ni'xi] y i - * | l + — — | * i for (xhx2)- •±°° (36a b) 

the holomorpic function w(z) (equation (33)) must satisfy 

Ni" 
w(z)-

Ci 
for z -» ' (37) 

At the crack faces, z = y + a n d z = y , we take Hi = Hi+ = 0 and, due 
to symmetry, yi~ = —yi+. Hence 

w(y+) = u0(y); w(y )•• • u0(y) 

7h~ 
for x = 0 and \y\ < \ irT I- (38a, b) 

(26a b) w n e r e uo(y) is real. Adding equations (38a) and (386) we find 

w(y+) + w(y~) = 0 for x = 0 and |y | < 
CiA2 

/. (39) 

The solution of this very simple homogeneous Hilbert problem may 
be written down immediately, see, e.g., Muskhelishvili [5], 

w(z) = P(z) H z2 + Z?_/2 
CiA2 

(40) 

where P(z) is a polynomium. Requiring w(z) to be bounded every
where we must insist that P(z) has a factor [z2 + iV2/

2/(CiA2)] and so, 
with the boundary conditions (37), the solution is 

w(z) = —-yz2 + ——i\ (41) 

An example demonstrating the shape of the deformed grid of yarns 
is shown in Fig. 2. Pig. 3 displays curves of constant ATi for one 
quadrant of the structure (referred to the undeformed state). The 
stresses on the extension of the crack is near the tip of the form 

Ni = K/V?; K = N i - \ \ , (42a, b) 

where r = x2 — lie the distance from the crack tip. The maximum yarn 
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Fig. 2 A fabric crack (square grid when undeformed); stretch ratios at infinity: 
X,™ = 1,05; X2°° = 1,20; nominal stresses at infinity: N-,"; N2"; N," = 0,25 
A/2™; number of fibers cut: n = 16 

force in the system cut by the crack appears in the yarns terminating 
the crack at the points of termination. Denoting this P i m a x , 

Plmax = H l ( 0 ; i + g2) _ Hj (0> i) (43) 

where <?2 is the spacing of the system No. 1 yarns in the undeformed 
grid. With (30d) and with 

Pi" = JVi~52 (44) 

denoting the yarn force at infinity we find the simple formula 

P i m a x = VTT+TPi" (45) 

where 

n = 2l/d2 (46) 

is the number of yarns cut in forming the crack. The maximum yarn 
force and the stress-intensity factor K (equations (42)) are interrelated 
through 

2K\% (47) 

u-
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where n + 1 has been replaced by n. Thus a condition of the type 

Fig. 3 Curves of constant N1 for the situation illustrated in Fig. 2 (reference 
to the undeformed structure; only one quadrant is displayed) 

Pi m a x < P\c is equivalent to a condition of the form K <KC, and the 
material parameter with length as its dimension, inherent in fracture 
mechanics, may here be identified with the fiber spacing h% 

The case of a pin-shaped inclusion, rigid or elastic, parallel with the 
No. 1 yarns (e.g., a seam) leads to similar expressions. Further trac
table problems are such in which the density of No. 1 yarns changes 
abruptly from one constant value to another across a boundary. These 
problems are of course less interesting than problems of holes and 
patches affecting both systems. However, this requires solution of the 
full nonlinear equations (10) or of some nonlinear approximation to 
them. 
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ADDENDUM 

The author regrets having failed to reference the work by S. M. 
Genensky and R. S. Rivlin, "Infinitesimal Plane Strain in a Network 
of Elastic Cords," Arch. Rational Mech., Vol. 4,1960, pp. 30-44. The 
existence of this paper certainly invalidates the statement that elastic 
fabrics have not been given much attention from the point of view of 
mechanics. 

While the scope and method of the two papers are parallel, the 
following differences may be noted. 

In the paper of Genensky and Rivlin the case of a grid that is skewed 
when undeformed is considered. In a theory of small deflections this 
is essential, but when deformations of any magnitude are admitted 
it is only a matter of taking the fundamental state from which de
formations are measured as one with orthogonal yarns. Such a state 
may be attained from any state with skewed yarns without applying 
forces to the fabric. 

The two forms of the general theory are identical in essence, dif

fering only in exposition. Emphasis on the stress measure of Piola, 
as in the case of the paper by this author, rather than on Cauchy stress, 
as in the paper by Genensky and Rivlin, appears to facilitate the 
discussion somewhat. In particular, the introduction of a vector of 
stress functions brings out nice duality properties of equilibrium and 
compatibility. Also the discussion on uniqueness appears to be 
new. 

The "quadratic" approximation suggested in the paper by this 
author seems to be adequate in connection with some problems of 
practical importance, e.g., crack problems, where restrictions on 
boundary conditions, requisite for the linear theory, cannot be im
posed. 

In that paper the completely linearized form is dismissed as inad
missible. The thorough investigation of this case in the paper by 
Genensky and Rivlin clearly marks such a conjecture as premature: 
The cases treated there are most interesting. 
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An Energy Method for Certain 
Second-Order Effects With 
Application to Torsion of Elastic 
Bars Under Tension 

When a mechanical system has a potential energy, it is a simple matter to show that if the 
generalized force corresponding to a coordinate p is known to first order in p for a range 
of the other coordinates of the system, then the other generalized forces can be found im
mediately to second order in p, without requiring a second-order analysis of the system. 
By this method the second-order change in the axial force when a finitely extended elastic 
cylinder is twisted is found from the first-order value of the twisting moment. Numerical 
results for a realistic form of the strain-energy function for an incompressible material 
suggest that the second-order expression for the axial force is very accurate for a wide 
range of twist for circular cylinders of rubber-like materials extended 100 percent or 
more. 

1 Introduction 
Approximations to exact solutions for nonlinear mechanical sys

tems are often used because of the difficulty of obtaining exact solu
tions. A first-order approximation valid for a parameter, p say, ap
proaching zero is usually determined by linear equations and so is 
often the first approximation to be found. In Section 2, we consider 
a system for which a potential energy exists. We show that if the 
generalized force corresponding to the parameter p is known to first 
order in p for a range of the other loading parameters of the system, 
then the generalized forces corresponding to the other parameters can 
be found immediately to second order in p , without requiring a sec
ond-order analysis of the system. 

A simple illustration of the method is given in Section 2 but the 
main application of this paper is to the problem of an elastic cylinder 
which is first finitely extended and then twisted. Under certain con
ditions, the axial force and twisting moment on a section of the cyl
inder are proportional to the derivatives of the total strain energy with 
respect to the extension ratio X and the twist \p per unit initial length. 
This is true if the deformation is imposed through rigid end plates 
which remain parallel, and in Section 3 we show that it is also true if 
the state of strain is the same at each section of the cylinder (a natural 
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extension of the Saint Venant torsion solution to finite elasticity). The 
solution derived by Green and Shield [1] for small twist superposed 
on finite extension of an isotropic cylinder provides the twisting 
moment M to first order in \p, with an error of order \j/a, for arbitrary 
A and a general form for the strain-energy function. In Section 4 we 
use the approach of Section 2 to obtain directly the expression for the 
axial force L to second order in ip, with an error of order \pA, for a 
general strain-energy function. By taking X to be unity and using the 
five-constant form of Murnaghan [2] for the strain energy, we rederive 
the result of Rivlin [3] for the second-order fractional extension of a 
cylinder under small twist and zero axial force. Rivlin used the dif
ferential equations and the boundary conditions governing the sec
ond-order displacements in deriving his result, but his approach did 
not require an explicit solution for the second-order displacements. 
The method of this paper uses only the first-order value for the 
twisting moment M as a function of X near X = 1, without any con
sideration of second-order displacements. 

Section 5 provides results for an incompressible isotropic material, 
again with a general form for the strain-energy function. Following 
Rivlin [3], Green [4] used the formulation of [1] for second-order 
torsion of an extended cylinder to derive the axial force to order \f/2 

for a cylinder composed of Mooney material, and the results of Section 
5 agree with those of Green when specialized to a Mooney material. 
For a circular cylinder of Mooney material, M is proportional to ip and 
L is linear in \j/2 so that the second-order value derived here for L is 
exact in this case. When the material has the empirical form for the 
strain-energy function derived in [5] for a rubber-like material, the 
first-order value (37) for M and the second-order value (38) for L are 
found to be very accurate for circular cylinders extended 100 percent 
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or more (X > 2) and twisted to values of ipa up to 3 rad (and above), 
where a is the initial radius. 

Whether an extended cylinder will tend to elongate or shorten when 
given a small twist with the axial force held constant depends on the 
material, the geometry of the cross section of the cylinder and the 
amount of initial extension. Comparison is made in Section 5 between 
cylinders of Mooney material and cylinders composed of a material 
with the empirical form for the strain energy function. 

Section 6 considers the small twist of an extended cylinder of 
transversely isotropic material and the first-order expression for the 
twisting moment is given for a general strain-energy function. The 
axial force can then be derived to second order in ip but the calcula
tions are omitted. 

2 T h e E n e r g y M e t h o d 
Consider a mechanical system which can assume equilibrium states 

characterized by a range of values of the N loading parameters or 
generalized coordinates q\,..,, <?JV- The system is disturbed from a 
known state B with values qi (I = 1,. . . , N) to another equilibrium 
state characterized by a parameter p in addition to qi. The range of 
values for p includes p = 0 and p is 0 for the state B. We assume that 
a potential energy V(qi, . . . , qui; p ) exists for the system and we 
suppose that the generalized forces Qi and P defined by 

dV dV 
Ql = — (/ = l , . . . , i V ) , P = — 

dqi dp 
(1) 

are of direct physical interest. From the definitions (1) it follows 
that 

dp ' dqi 
I.....N), (2) 

assuming that V is twice continuously differentiable. 
If P(q; p) is determined, V(q; p) can be found by integration of the 

system 

dV 
— = P(Q;P), 
dp 

V(q; 0) = Vote), (3) 

where Vo(<?) is the energy for the state B. The forces Qi can then be 
found from V. However, determination of P(q; p) could be difficult, 
and it is unlikely that P(q; p) will be known without it being possible 
to calculate V or Qi directly. It may be that if p is considered small, 
it is a relatively simple matter to determine P to first order in p . We 
suppose that in this way we are led to 

P = P0(q) + pPi(q) + 0(p2) as p - 0, (4) 

where Po(q) and Pi(q) are known functions. If Po is nonzero, it is a 
reaction for the configurations qi (p = 0). From (3) and (4) we ob
tain 

V=V0(q)+pP0(q) + ^p2P1(q) + O(p^ as p - 0. (5) 

The forces Qi can be found by differentiation from (5) or by inte
gration from (2), and we obtain 

Qi = Ql°{q)+p-
dP0 

-+-P 2 — + 0(p3) •0, (6) 
dqi 2 dqi 

where Qi° = dVo/dqi. 
Thus the determination of P to first order in p for the disturbed 

system leads to values for V and Qi correct to second order in p . The 
approach may be of particular interest for systems for which Po = 0 
as in this case consideration of the disturbed system for small p will 
not predict changes in Qj unless the analysis is carried out to second 
order in p . If P is .found to a higher order in p , say to order p " , then 
V and Qi can be determined to order p " + 1 . 

As a simple illustration, consider a uniform thin strip of elastic 
material with its ends constrained by frictionless guides to lie on the 
same horizontal line. Opposing horizontal forces H applied to the ends 
of the strip hold the ends a distance 2Xa apart, where la is the un-
stretched length, inducing a tension T"(X) in the strip. The midpoint 

of the strip is now displaced downward a distance pa by a vertical 
force P . In changes (5X, 5p, the work done by the vertical and hori
zontal forces supplies the change in the strain energy U of the elastic 
strip, 

and it follows that 

8U = 2HaS\ + Pabp, 

la d\ a dp 

From statical equilibrium we have 

P = 2T(X)p/X 

to first order in p , and from (8) we now deduce that 

\dT 71 

(7) 

(8) 

H m
 lP 

: T + - — 
2 X 

dX 
(9) 

to second order in p , since H =T when p = 0. Alternatively, the value 
(9) for H can be obtained by determining the tension in the strip to 
second order in p and taking the horizontal component. 

In the following, we apply the method to an elastic cylinder of length 
/ which is finitely extended to length \l and then twisted an amount 
\pl overall by end loads. Under appropriate end loading conditions 
(examples are given in the next section), the work of the end loads 
during changes S\ and Sip is expressible as 

Ll5\ + Ml8ip, (10) 

where L is the axial force and M the twisting moment, and this in turn 
is equal to the change in the total strain energy U(Xy ip). The value of 
M to first order in \p can be found from the Solution to the bound
ary-value problem obtained by linearization of the governing differ^ 
ential equations and boundary conditions with respect to \p. Assuming 
that this process leads to the first-order estimate 

M = \pm(\), 

we then have by the approach of this section 

where LQ(X) is the axial force under extension only, and the first-order 
solution has determined L to second order. The expression for L in 
terms of the deformation superposed on the finite extension will in
volve second-order displacements when third and higher-order terms 
are ignored. However, the preceding discussion shows that in those 
situations where the work on the ends in small changes in X, \p is ex
pressible in the form (10), it must be possible, by use of the equations 
and boundary conditions governing the second-order displacements, 
to transform the expression for L to 0(\p2) into one involving the 
first-order displacements and boundary data only. Similarly, it must 
be possible to manipulate the expression for the total strain energy 
U to 0(\p2) so that it is in terms of the first-order displacements and 
boundary data without the necessity for solving for the second-order 
displacements. 

Consider an elastic body in equilibrium in a deformed state B and 
denote the coordinates of a particle in the reference state and in B by 
xi and yi(x), respectively. When the body is disturbed to a'new 
equilibrium state for which a particle at y; in B is now at the point 

yi + eudx) + e2Vi(x) + . .., 

the total strain energy U is given by 

U= Svo\Wiy' 

dW 
) + r (e";,A + e2";,*) 

dyi,k 
1 d2W 1 

+ - e2 ut u "r sf dxidxidxz 
2 dyiik d\yr,s ' ' J 

to second order in e. Here Vo is the region occupied in the reference 
state, and W is the strain energy per unit volume of Vo. With the 
equilibrium equations 

76 / VOL. 47, MARCH 1980 Transactions of the ASME 

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



for the state B, the use of the divergence theorem leads to 

(11) 

U=U0+ f Ti° (cut + c2Vi)dS 
J So 

2 Jv, 
&W 

- Uitk Ur,s dx\dx2dxa, 
2 Jvo dyi,k dyr,„ 

where UQ is the total strain energy for B, So is the bounding surface 
of Vo and T,° are the known surface tractions for state B per unit area 
of So. We see that if u; are known, U will be known to 0(e2) without 
determining u; if the second-order contribution from the surface in
tegral is determinable from the boundary conditions for the super
posed deformation. 

3 E x t e n s i o n and T o r s i o n of Cy l inders 
We consider a cylinder of elastic material which is extended so that 

its overall length / becomes XI and is twisted so that the ends suffer 
a relative rotation of amount \pl, the lateral surface being free from 
traction. The work done by the end tractions during small quasi-static 
changes in X, \j/ is equal to the change in the total strain energy U(X, 
\p). In general, however, the end work depends on the details of the 
distribution of the surface traction, and not just on the resultant force 
and resultant moment applied to an end. 

We choose the rectangular Cartesian coordinate system x, so that 
the X3-axis is the line of centroids of the cross sections of the cylinder 
in the reference state and so that the plane ends are in the planes xa 
= 0,xa = l. If the ends are assumed to be attached to rigid plates which 
remain parallel to each other, we can suppose that for the extended 
and twisted cylinder we have the displacement conditions 

y,- = Xi on xa = 0, 

y; = U i cos \pl — x2 sin \[/\, x\ sin \pl 

+ x2 cos \l/l, XI) on X3 = l. (12) 

Here xi and y, are the coordinates of a particle in the reference and 
deformed states, respectively. For homogeneous cylinders with sec
tions having two axes of symmetry, the resultant load on each end will 
be an axial force L and a twisting moment M. For other sections, the 
"natural" axis of torsion will depend on the values of X and \p and on 
the material properties, and forces and moments other than L,M will 
be needed on the ends in order to maintain the end displacements 
(12). 

Components of surface traction measured per unit area of the 
surface in the reference state are denoted by Ti. During changes in 
X,!̂ , the tractions on the fixed end 23 = 0 do no work, while for the end 
xa = I the work of the tractions is given by expression (10) to first 
order, because the end moves as a rigid surface. The form (10) is also 
obtained if we write the work as the integral of T;5y; over the end xa 
= I, calculate 5y; from (12) and use the expressions 

L= f (Ts)xs_,dA, M= C (Tm-Tm)X3=ldA, (13) 
JRO JRO 

where flo is the undeformed cross section. Thus, for the end conditions 
(12), we have 

ld f / 

I dX ' 
M

 l d U 

I d^ 
(14) 

For a long enough cylinder, end effects become negligible and (14) 
would then be expected to hold for other end conditions which impose 
the extension and twist. Poynting [6] has obtained experimental 
verification for long steel wires of the relation 

dL 

dX 
(15) 

which follows from (14). More recent experimental work on torsion 
of wires under tension has been done by Allen and Saxl [7]. Houston 
[8] has shown that the reciprocal relation 

dX 

dM~ dL 
(16) 

also holds. 
For a homogeneous cylinder we can consider a state of extension 

and twist in which we have the same state of strain at each section, 
as in the classical Saint Venant solution. (The Cauchy strains C,̂  = 
yr,iyr.k are then independent of xa.) For the portion of the cylinder 
initially between xa = 0 and x3 = I, the section xs = I will be rotated 
an amount \pl about the axis of torsion and displaced an amount (X 
— 1)/ axially relative to the section xa = 0. Apart from an arbitrary 
superposed rigid displacement we can therefore write 

(yi. y2)xz=l = (yi cos fl - y 2 sin \j/l, yi sin fl + y2 cos \pl)X3=0, 

(y3)x3=; = (y3)x3-o + X/, (17) 

where (yi)x3=o are functions of xi,x2 which also depend on X,^. These 
functions are determined by equilibrium and the condition of zero 
traction on the lateral surface. The line of particles which forms the 
axis of torsion is determined by the values of x\, x2 for whichyx and 
yi on xa = 0 both vanish, and the axis location will vary with X,\{/ in 
general. We will also have the following relations between the tractions 
on the end surfaces xa = 0 and 13 = /, 

(Ti, T2)X3=i = - ( T i cos \pl - T2 sin ^/, Ti sin \[/l + T2 cos \pl)xs=0, 

(Ta)X3=,= -(T3)X3=0. (18) 

In quasi-static changes SX, 8\j/ of the extension and twist the work of 
the tractions on xa = 0,( will equal the change in the total strain energy 
U(X, \(/) of the portion of the cylinder, so that 

SU-- f" {(Tihi 
JRO 

)„_o + (Ti&yi)X3=i}dA 

=llbi>. 

From (17) and (18), it is apparent that 

(r3ay3)*3=o + {Ta&yz)^i = (T3)x3=; l&K 

and a short calculation leads to 

(Tihi + T2by2)xs=0 + (T16yl + T2Sy2)X3=0 

= -(Tm - Tiy2)X3=Q Ibt = CTzyx - Tiy2)x 

Thus we have 

SU = L18X + Ml&f, 

where L and M are the resultant axial force and twisting moment 
acting on xa = I (and on every other section). It follows that we again 
have (14), so that L and M are the partial derivatives of the strain 
energy per unit length of the undeformed cylinder. 

4 R e s u l t s for Cy l inders of I so trop ic M a t e r i a l 
Green and Shield [1] considered the problem of a small twist su

perposed on the uniform finite extension of an isotropic cylinder, with 
the same state of strain at each section. They showed that to first order 
in the twist \j/ per unit length of the undeformed cylinder,1 the solution 
can be written in terms of the warping function of the classical Saint 
Venant solution for the unextended cylinder. Moreover to first order 
in \f/, the resultant force and moment on each section reduces to an 
axial force L and a twisting moment M when the axis of torsion is 
chosen to be the line of centroids of the cross sections. 

From [1], the twisting moment M is, to first order in i/', given by 

Xi2 

M ^ ~ ( W T . + X^W2)[XH0-

x^ 
Xi 2 ( / o -S 0 ) ] , (19) 

where the transverse extension ratio Xi is determined in terms of X 
from 

1 In [1], i/< is used for the twist per unit length of the extended cylinder, so we 
replace \j/ in [1] by i/</X to conform to the notation of this paper. 
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Wi + (X2 + XX
2)W2 + X2Xi2lV3 = 0. (20) 

Here W\, W% W3 are the derivatives of the strain energy W(h, I2, h) 
per unit volume of the reference state with respect to the strain in
variants, and they are evaluated for the values 

M = ^ t ( X ) 
A 

/o + -
X,2 

(28) 

h = X2 + 2Xi2, I2 = 2X2Xi2 + X14, / 3 = X2Xi4. (21) 

while to second order in \p2 we have 

2 dX 

The geometry of the cross section enters in (19) through the moment 
of inertia IQ of the unstrained cross section RQ about the centroid and 
through the classical geometrical torsional rigidity So of the un
strained cylinder. 

From (14) and (19) we have for a portion of the cylinder initially 
of length / 

-U(\,t) = A*W{.h,I%h) 

\ 2 
+ \ P T V (Wi + Xi2W2) [X2/0 - Xi2(/o - So)] (22) 

X2 

to second order in \p, where AQ is the initial cross-sectional area. Be
cause of symmetry considerations, M is an odd function of \p, so that 
(19) is in error by a term of order ]ps and the error in (22) is 0(\p4) as 

v^o. 
The axial force L is obtained by differentiating (22) with respect 

to X, and we obtain, with an error of 0(i/'4), 

A0t(\)+\rT 
2. A 

Xi2S0 

Xi 
dt 

h + -
X12 

dX 

+ t (X) | /o |2 

(X2 - Xi2) 

dXi Xi 

dX ~ X 

X(X2 - Xi2)2 I 
Xx (3X2 - Xx

2) - 2X ^ (2X2 - Xi2) 
dX 

(29) 

If X is changed by an amount of 0(\p2), the axial force L will change 
by an amount of 0(ip2) (and the change in M will be of order \[/a). If 
we change X to X + \{/2h, then the second-order change in L will be 
equal to 

^hA0 %- = IV \ A0 ( I (X2 + Xi2) (Wi + Xi2W2) - 2XX ^ 
dX X IX dX 

X [Wi + (2Xi2 - X2)W2] + 2(X2 - Xi2) \X[Wn + 3Xi2Wi2 

L = A0t(X) + 2f' 

dXi 

^ - ( W i + X i 2 W 2 ) ( / o - S o ) 
. A 

+ Xi4Wi3 + 2Xi4 W22 + X^WK] + 2Xi — [Wu + (X2 + 2Xi2) W12 
dX 

+ — [ X W i + 2X!2lV2)/o - Xx2(2Wi + 3XSW2) do ~ So)]' 
dX 

+ X![X2/0 - X!2(/0 - So)] [\[Wn + 3\i2W12 + Xi4Wl3 

+ X2Xi2Wi3 + Xi2(X2 + X!2)W22 + X2Xi4W23] (30) 

+ 2Xi4W22 + X1
eW2i] + 2XX ~ [Wu + (X2 + 2Xi2)W12 

dX 

+ X2Xi2W13 + Xi2(X2 + Xi2)W22 + X2X!4W23] 1, (23) 

where we have written Wik for cPW/dlidlk- Here t(X) is the nominal 
stress in simple extension and 

(X) = — = -2 (Wi + Xi2W2) (X2 - Xi2 

dX X 
(24) 

if we use (20). The derivative dXJdX can be determined by differ
entiation of (20) which leads to 

dXi 

dX 
[W2 + X2W3 + 2Wn + 4(X2 + Xi2)W12 + 4X2Xi2WX3 

+ 2(X2 + Xi2)2W22 + 4X2Xi2(X2 + Xi2)W23 + 2X4Xi4W33] 

= - — [W2 + Xi2Wa + Wn + (X2 + 3Xi2)Wi2 + X,2(X2 + Xi2) W13 
Xi 

+ 2Xi2(X2 + XX
2)W22 + Xi4(3X2 + X i W 2 3 + X2XX

6IV33]. (25) 

We note that equation (20), which expresses the condition that the 
transverse stress vanish during simple extension, can be written as 

By choosing h so that the right-hand side of (30) is equal to the neg
ative of the second-order term on the right-hand side of (23), we can 
determine the second-order fractional extension \p2h which results 
when the cylinder is twisted with the axial force held constant. 

When the reference state is unstressed, in order to include all sec
ond-order effects for deformations about the reference state it is 
sufficient, following Murnaghan [2], to take W to be given by 

W = aiJ2 + a2Ji2 + a3J1J2 + a ^ i 3 + a5J3 , (31) 

where a\, a2 • • . as are material constants and 

J i = / i - 3 , J 2 = 72 - 2/i + 3, J 3 = / 3 - / 2 + / i - l . 

The derivatives Wi, Wik for the reference state are given by 

Wi = as - 2ax, W2 = ai - a5, W3 = o5, 

Wn = 2(a2 - 2o3), W12 = a3, W13 = W22 = W23 = W33 = 0. 

(32) 

The constants at, a2 are related to the first-order response of the 
material and in fact we have, when X = Xi = 1, 

dt 
— = £ = 
dX 

-8<zi 
(a i + 3a2) dXi 

(at + 402)' dX 

(at + 2a2) , (33) 

dW 

dXi 
(26) 

in which, as before, W is evaluated for the values (21) of the strain 
invariants. An alternative expression for dXi/dX is therefore 

d X t _ d2W jd2W 
~ 2 " dX dXdX 

/d2W 

1 / aXi2 (27) 

(ai + 4a 2) 

where E and a are Young's modulus and Poisson's ratio. By setting 
X = Xi = 1 in (23) we can find the second-order axial force induced 
by twisting the cylinder with its initial length held fixed, and we ob
tain 

2\j/2 

L=- ——-([a 5 (a i + 2a2) - a i (2a2 - a3)]S0 
(ai + 4a2) 

- 2 a 1 ( a 1 + 3 a 2 ) ( / 0 - S 0 ) | . (34) 

An extension of amount \p2h requires an axial force \p2hEAa and if we 
choose h to be given by 

Experiments on simple tension and compression can determine the 
dependence of the nominal stress t(X) and the transverse extension 
ratio Xi on X, and the derivatives dt/dX and dXi/dX can then be es
timated. It is therefore of some advantage to express M and L in terms 
of t and Xi. From (19) and (24) we have, to first order in i/s 

h- -\[a5 (ai + 2a2) - a i (2a2 - a3)]S0 
4A0ai (ax + 3a2) 

- 2ax (ai + 3a2) (/0 - S0)i (35) 

then the axial force will be of order \p*. This estimate for the fractional 
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extension of a cylinder under small twist and no axial force was first 
obtained by Rivlin [3], who derived the result using the differential 
equations and boundary conditions governing the second-order dis
placements but without obtaining an explicit solution for the sec
ond-order displacments. 

Green and Wilkes [9] considered the finite extension and torsion 
of a circular cylinder of isotropic material, and they obtained M cor
rect to 0(i/'3) and L correct to 0(yp2), With the method of Section 2, 
a value for L correct to 0(\p4) can be obtained from the value of M 
given in [9]. 

5 I n c o m p r e s s i b l e I so tropic M a t e r i a l s 
When the material can be treated as incompressible, there is some 

simplification of the results of the previous section. For no volume 
change 73 = 1, and in simple tension this requires the transverse ex
tension ratio Xi to be 1/X1'2, with the hydrostatic pressure adjusting 
to make the transverse stresses zero. The strain energy W is a function 
of 11 and 12 which have the values 

7i = X2 + 2/X, h = 2X + 1/X2 

for simple extension. 
The twisting moment is 

M = 2.^ (Wi + W2/X)[I0 - (70 - S0)/X3] 
X 

with an error of 0(\pa) and the axial force is 

L = 2A0(W! + W2/XHX - 1/X2) 

(36) 

(37) 

with an error of 0(i/'4). Alternatively we can write 

So 
V X2 7o + 

(X3 - 1) 

L = A0t{\) + 

where 

I f 2 

2X2 /o + -
(X3 - 1). 

t(\) 

X 
21 o + So 

(5X3 - 2) 

(X3 - 1)< 

(39) 

(40) 

t(\) = 2(Wi + W2/X)(X - 1/X2) 

is the nominal stress in simple tension. 
From (37) and (38), the ratio of the torsional stiffness M/\p for a 

small twist superposed on simple extension to the force Lo necessary 
to produce the simple extension is given by [1] 

M 

Ml±_[h- do 
U 

• s0)/x
3; 

X(X - 1/X2) 
(41) 

and it is independent of the particular form of the strain-energy 
function for the incompressible material. The result (41) was first 
obtained by Rivlin [10] for the special case of a circular cylinder and 
it has been verified experimentally for rods of rectangular section by 
Gent and Rivlin [11]. 

Second-order effects in torsion of an extended cylinder were con
sidered by Green and Shield [1] for the case of a Mooney material, for 
which W\ and W2 are constants. Green [4] used the formulation of 
[1] to derive L to order \p2 without obtaining a solution of the 
boundary-value problem for the second-order displacements, and the 
results of [4] are in agreement with (38) if W\ and W2 are replaced by 
constants Ci and C2, so that Wap are zero. (The symbol \p of [4] cor
responds to \p/X of this paper.) 

The torsion and extension of a circular cylinder of incompressible 
isotropic material was treated by Rivlin [10] who derived the 
values 
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3]) (38) in which 

Fig. 1 Twisting moment for torsion of an extended circular cylinder with 
empirical strain energy 

M = 4TT - C" (Wi + W2/\)p
adp, 

X Jo 

L = 2ir JJ I2 (x - i | (Wi + W2/\) ~^(Wi + 2W2/\)p-pdp, 

(42) 

h = X2 + 2/X + ^2p2/X, 12 = 2X + 1/X2 + i/<V/X2 

and a is the radius of the cylinder. When W\ and W2 are constants, 
M is linear in \[/ and L is quadratic, so that (37) and (38) are exact for 
a circular cylinder (for which So = lo) of Mooney material. 

Values for Wi and W2 were determined in [5] from experimental 
results of Treloar [12] for a latex rubber under the assumption that 
W\ depends only on I\ and W2 only on I2. The expressions 

W1/C1 = 1 + 2.49 X lO"7 (7i - 3)4 3 < h < 56 

W2/C1 
'0.376 + 1.32 X lO-2 (4.928 - 72)4-864 3 ^ 72 < 4 

,0.77/72 4^I2< 200 

(43) 
provide a reasonable fit for the empirical values given in [5]. In con
trast to the Mooney form, W2 exhibits a sharp drop as 72 increases 
from the value 3 for the reference state. By using (43) in (42), M and 
L can be found by numerical integration for a circular cylinder com
posed of a material with the empirical strain-energy function of [5]. 
Figs. 1 and 2 show the variation ofMHoipG and L/A0G with \[/a for 
values of X from 1 to 5. Here G is the shear modulus for small 
strains, 

G = 2(Wi + W2) for 7 i = 7 2 = 3. 

The value ofM/\p for X = 1.5 varies less than 8 percent from the value 
given by (37) as xf/a increases from 0 to 3 radians and the variation can 
be ignored for extension ratios greater than 2. For values of \pa be
tween 1 and 3 the value of L departs significantly from the second-
order value (38) for X = 1,1.25, and 1.5, but (38) is an excellent fit for 
X = 2 and larger. (The larger values of \f/a may be unrealistic for cyl
inders extended less than 100 percent.) For experimental results on 
circular cylinders made of rubber, see Rivlin and Saunders [13]. 

Fig. 3 shows the variation with X of the torsional stiffness M/\p for 
small twisting of an extended cylinder for So/7o = 0, 0.25, 0.5, 0.75, 
and 1. The values in Fig. 3 were derived from (37) using the empirical 
forms (43). The curves run together for larger values of X and they 
have a minimum near X = 5.4. The curves for So/7o = 0,0.25, and 0.5 
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h 

Fig. 2 Axial force for torsion of an extended circular cylinder with empirical 
strain energy, exact and second-order theory 

M 

Fig. 3 Torsional stiffness for small twisting of an extended cylinder, empirical 
strain energy 
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Fig. 4 Tendency of an extended cylinder to elongate or shorten when twisted, 
for empirical strain energy and Mooney material 

Fig. 4 for extension ratios X up to 1.6. All cylinders of material with 
the empirical strain-energy function tend to elongate on twisting for 
extension ratios X between 1.6 and 5.4, where M has a minimum, and 
to shorten for larger extension ratios. Cylinders of Mooney material 
(with positive C\ and C2) all tend to elongate on twisting if stretched 
beyond 60 percent extension because dAf/dX remains negative beyond 
X = 1.6. 

6 T r a n s v e r s e l y I s o t r o p i c C y l i n d e r 
When the material of the cylinder is transversely isotropic with 

respect to the 13-axis (the cylinder axis), the strain energy is a function 
of the quantities 

# i = - ( C 3 3 - l ) , K2 
: 7< C r3 2 

4 
+ C23

2) 

in addition to the invariants l\, /2 , h (see [14] for example). Here Cik 
are the Cauchy strains yr,iyr,k and K\, K2 are invariant with respect 
to rotations of the coordinate system about the *3-axis. For the ex
tended cylinder 

K l 4 ( X 2 " 1), #2 = 0, (45) 

and the transverse extension ratio Xi is given by (20) in which the 
derivatives Wi are evaluated for the values (21) and (45). The nominal 
axial stress t(X) is given by 

dW 
t(X) = 

dX 
= - (Wi + Xi2lV2)(X

2 - X!2) + \W4 
X 

also have a maximum between X = 1 and X = 1.5. The second-order 
term in expression (38) for L is proportional to dAf/dX and the sec- ' 
ond-order term vanishes when 

S0 ^ |X(4 - \3)Wi + (5 - 2X3)W2 + 2(X3 - 1)HWU + 2W12/X + MWX2)j 

7 0
_ i4XWi + 5 W 2 - 2 ( X 3 - l ) ( i y u + 2Wi2 /X+W2 2 /X2 j 

if we use (20), where W4, = dW/dK^ 

(44) 

Thus (44) gives the location of the extremum of the torsional stiffness 
M/\p for varying X. Fig. 4 shows the value of S0//0 given by (44) for X 
increasing from unity for the empirical forms (43). For comparison 
the curves for a neo-Hookean material (C2/Ci = 0) and a Mooney 
material for which C2/C1 = 0.6 are also shown. The vertical scale on 
the right in the figure indicates the ratio b/a of the semiaxes of an 
ellipse corresponding to the values of Sn//o on the left scale. 

From (15), the axial force L will increase or decrease on twisting 
at constant extension according as dAf/dX is positive or negative. The 
nominal stress i(X) in simple extension increases with X for rubber
like materials so that the cylinder will tend to elongate or shorten on 
twisting when the axial force is held constant according as dM/dX is 
negative or positive. The tendency of an extended cylinder under 
constant axial force to elongate or shorten on twisting is indicated in 

We assume that after a small twist of the extended cylinder, the 
particle initially at x, is at the point 

y; = iXi (xi - \SJX2XS), Xi (x2 + $xix3), 

X(*3 + U(xi, x2))\ + 0(^). (46) 

We can follow the approach of [1] to determine the warping function 
<t>. Alternatively, we can introduce (46) into the equilibrium equations 
(11) and into the boundary conditions 

Ti = - nk=0 
dy.,A 

on the lateral surface (rik is the normal in the reference state), and 
then linearize in \p. We find, as for the isotropic cylinder, that 
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0 = \i2w(Xi, X2)/\
2, 

where w is the classical warping function for the unextended cylinder. 
The twisting moment M is found to be given by 

M = f ^f t(X) I0 + 2f ~ (Wi + \SW2 + - WW5)sD 
A A* \ 4 / 

= 2xp^-(Wr + Xi2W2)|X
2/0 - Xi2 (I0 - So)} 

A^ 

+ ^Xi4wiI0 + ^W!iS0\ (47) 

to first order in xp, where Ws = dW/dK2- The axial force L can be 
found from 

L = t(X)A0 + ^ ^ + O ( ^ ) , (48) 
2 aX 

but we omit the details of the calculation. 
For an incompressible material, Xi is l/X1'2 and (47) becomes 

M = 2 ^ (Wi + WVX)[/o - (h ~ So/X3] + ^ (IVJo + W5S0/2X). 
A A 

(49) 
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Rubber Covered Rolls—The 
Nonlinear Elastic Problem1 

The problem of the indentation of a rubberlike layer bonded to a rigid cylinder and in
dented by another rigid cylinder is analyzed. The rubberlike layer is assumed to be made 
of a homogeneous Mooncy-Rivlin material. The materially and geometrically nonlinear 
problem is solved by using the finite-element code developed by the author. Results com
puted and presented graphically include the pressure profile at the contact surface, stress 
distribution at the bond surface and the deformed shape of the indented surface. 

Introduction 
Traction in vehicles, the nip action in cylindrical rolls in the pa-

permaking process and in the textile industry, and friction drives are 
some examples of the kind of-problem studied herein. Each of these 
problems involves indentation, by a rigid cylinder, of the rubberlike 
layer bonded to a core made of a considerably harder material. Such 
problems have been studied analytically [1], experimentally [2], and 
numerically [3] by using the finite-element method. In [1] Hahn and 
Levinson solve the indentation problem on the assumption that the 
rubberlike layer is made of a Hookean material and its deformations 
are within the range of applicability of the linear theory. The problem 
is solved by using an Airy stress function and the solution is in terms 
of double infinite series one of which converges slowly. In the nu
merical study [3], Batra, et al., assume that the rubberlike layer is 
made of a thermorheologically simple material and its deformations 
are small so that the linear strain-displacement relations and a linear 
relation between stress and strain rate can be presumed. The exper
imental work [2] of Spengos is quite extensive and involves a wide 
range of loads, thicknesses of the rubber layer, and speed differences 
between the mating rollers. Other contact problems involving 
geometries different from the one considered here have been studied 
by Sve and Keer [4], Keer and Sve [5], Itou and Atsumi [6], Alblas and 
Kuipers [7-9], and Batra [10, 11], 

A study of the results of Hahn and Levinson suggests that for 
moderate values of nip width, the value of the maximum principal 
strain is of the order of 20 percent. This observation is also confirmed 
by the experimental investigations of Spengos. It therefore appears 
that the maximum strain commonly encountered in practice is 
probably much higher than what is usually thought to be the range 

1 Dedicated to Clifford Truesdell on the occasion of his 60th birthday. 
Contributed by the Applied Mechanics Division for publication in the 

JOURNAL OP APPLIED MECHANICS. 
Discussion on this paper should be addressed to the Editorial Department, 

ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until June 1,1980. Readers who need more time to 
prepare a discussion should request an extension from the Editorial Depart
ment. Manuscript received by ASME Applied Mechanics Division, May, 1979; 
final revision, October, 1979. 
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Elastic layer Rigid material 

Fig. 1 System to be studied 

of applicability of the linear theory. Thus one needs to develop 
methods to solve the problem when the deformations are large and 
the material of the layer is nonlinear. In this paper we assume that 
the material of the rubberlike layer can be modeled as a Mooney-
Rivlin material and solve the large deformation problem by the fi
nite-element method. 

A schematic diagram of the system studied is shown in Fig. 1. Since 
the length of rolls is considerably large as compared to their diameters, 
we assume that plane strain state of deformation prevails. Method
ologies to solve finite plane strain problems for incompressible elastic 
materials have been given by Oden [12] and Scharnhorst and Pian 
[13]. Realizing that these authors had developed computer programs 
tailored to solving specific problems and illustrating the principles 
involved, the author developed a computer code capable of solving 
quasi-static, mixed boundary-value finite plane strain problems for 
Mooney-Rivlin materials. Results obtained for two sample problems 
by using this program compare favorably with those obtained from 
the analytical solution [14]. The indentation problem considered in 
this paper is solved by using this basic program and the techniques 
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developed earlier [3, 10, 11] for solving contact problems numeri
cally. 

Formulation of the Problem 
We use a fixed set of rectangular Cartesian axes with origin at the 

center of the roll with the rubberlike cover and denote the position 
of a material particle in the reference configuration by X" and the 
position of the same material particle in the current configuration by 
x;. Thus %i = xi(X", t) gives the current position, at time t, of the 
material particle that occupied place X" in the reference configura
tion. Since the core and the mating cylinder are usually made of a 
material considerably harder than the material of the rubberlike layer, 
we regard these as being rigid and study only the mechanical defor
mations of the rubberlike layer. Neglecting the effect of body forces 
such as gravity on the deformations of the roll cover, equations gov
erning the deformations of the rubberlike layer are 

d e t F ; „ = l , Fi„ = X i , „ , (1) 

P&i = Tin,n. 

In (1) p is the present mass density, T,„ is the first Piola-Kirchoff 
stress tensor, a superimposed dot indicates material time differen
tiation, a comma followed by an index a indicates partial differen
tiation with respect to X", Fj„ is the deformation gradient, and the 
usual summation convention is used. Equation (l)i is the continuity 
equation in referential description and signifies that the mass density 
stays constant. The first Piola-Kirchoff stress tensor T;„ and the 
Cauchy stress tensor aij are related by 

07/ = — Ti„Fj„ (2) 
Po 

in which po is the mass density in the reference configuration. For 
incompressible materials, p = po and (2) simplies to oij = Ti„Fj„. 
Equation (1) is to be supplemented by constitutive relation for T;„ 
and side conditions such as boundary conditions. Before we state 
these, we give the following assumptions to simplify the problem. 

We assume that the material of the roll cover is homogeneous and 
can be modeled as a Mooney-Rivlin material, contact between the 
indentor and the roll cover is frictionless, and that the effect of all 
dynamic forces on the deformation of the roll cover is negligible. We 
note that the mass density of rubber is quite low (comparable to that 
of water). Therefore, for practical geometries and speeds in the range 
of 500 rpm, the effect of centrifugal force on the stress distribution 
is very small. Under these assumptions the indentation problem be
comes quasi-static and equation (1) is replaced by 

det.F;„ = 1, 

0 = Tia.a 

(F~lUTw = Sae = piC'^fi + 2Ci<5„/3 + 2C2(/1<5„/3 - Ca0), 

. C„@ = Fi„Fip, I\ = C„„. (3) 

In these equations, C„g is the right Cauchy-Green tensor, C\ and C2 

are material constants, p is the hydrostatic pressure not determined 
by the deformation of the roll cover but can be found from the 
boundary conditions, 6a/j is the Kronecker delta, I\ is the first in
variant of the strain tensor C„/j and S„p is the second Piola-Kirchoff 
stress tensor. 

In practice the length of the cylindrical rollers is significantly larger 
than their diameters so that it is reasonable to presume that plane 
strain state of deformation prevails. Thus X3 = &aaX" and equation 
(3)2 for i = 3 is identically satisfied. Furthermore, deformations of the 
roll cover are symmetrical about the line joining the centers of the 
rollers. Because of this symmetry, we study the deformations of the 
upper half of the roll cover. 

Equation (3)i and the set of equations obtained by substituting (3)3 
into (3)2 are three equations for the three unknown fields p , x\, and 
%2- These equations are to be solved under the following boundary 
conditions. At the inner surface X„Xa = Ri, 

"; = Xi - &t„X" = 0, (4) 

at the outer surface X„X„ = /Jo, 

eiTiaNa = 0, (5) 

ni TiaNa = 0, if 8 = arc tan I—J > 0O, 

= f(0), if arc tan I—j < 0O, (6) 

f(6o) = 0, 

and at the plane through the center line of rollers, 

1/2 = 0, 

Tiz = 0. (7) 

In equations (4)-(7), 2V„ is an outward unit normal to the surface in 
the reference configuration, e; is an unit tangent vector to the surface 
in the current configuration, and n; is an unit outward normal to the 
surface in the current configuration. The boundary condition (4) 
implies that there is perfect bonding between the core and the rub
berlike layer, and the boundary conditions (5) and (6) signify that the 
part of the roll cover not in contact with the indentor is traction free 
whereas that in contact with the indentor has a normal pressure acting 
on it. Note that do defines half nip width in the reference configura
tion. The boundary condition (6)3 insures that a contact problem 
rather than a punch problem is being solved. 

We note that the half nip width 80 and the pressure f(6) at the 
contact surface are unknown and are to be determined as a part of the 
solution. These two should assume values such that the deformed 
surface of the rubber like layer matches with the profile of the in
dentor. In practice the load P, given by 

J*flo 

f(6)dd, (8) 
0 

pressing the two rolls together is specified. However for ease in com
putation, we prescribe OQ and find the required load. Of course one 
could equally well prescribe the indentation it0> as is done in [10], 
between the two rolls and compute the necessary load. Specification 
of P and then finding do and the indentation uo, though feasible, re
sults in significantly more computing time. The indentation Uo equals 
the distance through which the two rolls move closer when loaded and 
is the value of the radial displacement of that point on the outermost 
surface of the roll cover that lies on the center line of the rollers. 

The problem as just formulated is too difficult to solve analytically, 
so we solve it by the finite-element method. 

Brief Description of the Finite-Element Formulation 
We use the total Lagrangian formulation and the principle of sta

tionary potential energy. That is, the potential energy 

E = Ciw + -(Ia-l)\dV- ChauadA (9) 

takes an extremum value [12, p. 253] for all admissible displacement 
fields that satisfy the displacement boundary condition. In (9), h is 
the surface traction acting on a unit area in the reference configura
tion, W is the strain-energy density and ^3 = det C is the third in
variant of C. For Mooney-Rivlin materials 

W = Cdh ~ 3) + C2(/2 - 3), / 2 = / 3- 1(C- 1)„„. (10) 

SE = 0 gives 

JScpSEapdV = JhaSuadA, J6p(7 3 - l )dV = 0, (11) 

in which E = (C - l)/2. 
We assume that the load f(6) at the contact surface is applied in M 

equal increments and denote the incremental change in the value of 
say u caused by the (N + l)st load increment by Au, i.e., 

U N + I = UN+ A U , E W + 1 = EN+ AE. (12) 
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From equations (3)4, (1)2, (4) and the definition of E, we obtain 

AE„p = Ae„p + Ar/,v/5, Ar/„3 =
 lkAuy<„Auy4i, 

Ae„,3 = V2(Au„,0 + Aufi,„ + uNyiaAuytfj + u A ,
7 jAu 7 , „ ) (13) 

We note that AI3 = 2(C~1)«pAE„/,. The relation between As, AE and 
Ap is given in reference [13]. Setting 5-E,,̂  = hAE„p, 5u„ = 8Au„, and 
bp = <5Ap in (11) we obtain 

S(Sttfs
N + ASa/3)dAE„pdV = Jh„N+lbAu„dA, 

JSApiC^-^AE^dV = -VaJ-SApt/yv - l)dV. 

(14) 

(15) 

We now make the assumption that the increment in the load is small 
so that 

ASaf,bAEal3 ^ ASa0&Aeafj, 

(CNrj5AEalt <* ( C ^ 5 A e a / 9 , etc. (16) 

Hence an approximation to equations (14) and (15) is 

SASlvP5Ae„l}dV+ SS^bAij^dV =* Sh«N+1bAu„dA 
- SSB0N8AealldV (17) 

S5Ap(C»)$AealidV ~ - % S^P(hN - DdV. (18) 

We use equilibrium iterations [15], i.e., iterations within a load step, 
to insure that equations (17) and (18) are satisfied within a prescribed 
error. 

A finite-element program based on equations (17) and (18) and 
employing 4-node isoparametric quadrilateral elements with 2 X 2 
Gaussian integration rule has been written. The hydrostatic pressure 
p is assumed to be constant within an element. The pressure load 
between two surface nodal points a and b is replaced by lumped nodal 
loads given by 

hi° = hib = f(8*)eaij(xjb - xj°). 

Here eijk is the permutation symbol and it equals 1 or - 1 according 
as i, j , k form an even or an odd permutation of 1, 2, and 3 and is zero 
otherwise and 0* is the value of 0 for the midpoint of the line joining 
nodes a and b. The loads for the {N + l) th load step are calculated 
based upon the positions of the nodes after the JVth load step. 

The accuracy of the developed finite-element code has been es
tablished by comparing results for two sample problems with their 
analytical solution [14]. This program has been modified to solve the 
contact problem. 

Computation and Discussion of Results 
In order to solve the problem by the finite-element method, we 

consider the quarter of the roll cover lying in the first quadrant and 

assume that the surface along the vertical plane is traction-free. This 
assumption is motivated by previous studies on this problem in which 
it has been found that stresses decay rather rapidly with the distance 
from the contact region. This assumption is verified to be true in the 
present study too. This portion of the roll cover is divided into 
quadrilateral elements as shown in Fig. 2. The mesh is finer within 
approximately one and a half times the contact width. 

Half nip width do and the form of the function f(6) are assumed. 
The presumed load is divided into 30 equal steps and within each load 
step upto 15 equilibrium iterations [15] are performed to insure that 
displacements are accurate to within 1 percent of their values. The 
deformed surface of the roll cover is calculated and a check is made 
to insure that the deformed surface in the assumed contact zone 
matches, within a prescribed tolerance, with the circular profile of the 
indentor and that the nodal point just outside the assumed contact 
area has not penetrated into the indentor. If the second condition is 
not satisfied implying thereby that the nodal point outside the pre
sumed contact width has penetrated into the indentor, either the value 
of Do is increased or the total load is decreased. However, if the second 
condition is satisfied but the first is not, the form of f{6) is suitably 
modified until both preceeding conditions are satisfied simulta
neously. The deformed surface of the roll cover is taken to match with 
the profile of the indentor if the distance of each nodal point on the 
contact surface from the indentor is within 1 percent of the indenta
tion Uo- Usually, with a little experience, one can make pretty good 
estimates of 6Q and f{8) so that the entire process converges in four 
or five iterations. 

In order to insure that the modifications made in the program to 
solve contact problems are correct, we compare results computed from 
the present program with those given by Ha f l n and Levinson. As is 
clear from Fig. 3, the values of shear stress obtained by these two 
different methods are quite close. As for the difference in the values 
of the radial stress we remark that a similar difference exists between 
Hahn and Levinson's results and those of Betz and Levinson [16] who 
used the finite-element method to solve the problem. It should be 
added that Hahn and Levinson's solution is in the form of a double 
series and the computation of numerical results does involve con
vergence errors. However, the appreciable difference between the 
analytical solution and the finite-element solution can only be at
tributed to different methodologies. 

Fig. 4 depicts the pressure profiles obtained by Spengos [3] and the 
present solution using the nonlinear theory. The two compare fa
vorably. The difference between the two is possibly due to the fact 
that the assumption of plane strain state of deformation made in the 
present work is not quite valid for Spengos' experimental set up 
wherein the length-to-diameter ratio of rollers was of the order of one. 

, Whereas Spengos reports that when the experimental contact widths 
are corrected by accounting for the finite size of the recording in-
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Fig. 5 Stress distribution at the contact surface; comparison of results from 
linear and nonlinear theories 

struments, the pressure profiles for various nip widths match, we 
obtain slightly different pressure profiles for different contact widths. 
In the results presented in Figs. 4-7, the values of various geometrical 
parameters correspond to those for run number 30 of Spengos. (That 
is, R\ = 47.2 mm, R0 = 60.7 mm, R = 76.2 mm.) In Fig. 5 is shown the 
pressure profile obtained by using the linear and the nonlinear theory. 
In the linear theory entire load is applied in one step and no account 
is taken of the deformation of the surface on which the load is applied. 
Also the strain-displacement relation and the stress-strain relations 
are linear. In the nonlinear theory, the problem is solved incrementally 
and each increment in load is applied on the surface deformed up to 
the application of that load increment. We remark that in Fig. 5, the 
pressure profile at the contact surface represents the nondi-
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Fig. 6 Stress distribution at the bond surface 

UNPEFORMED SURFACE 

Fig. 7 Deformed surface of the rubberlike layer 

mensionalized Cauchy stress. It should be added that in the linear 
theory 6(Ci + C2) equals Young's modulus. 

Results presented in Fig. 6 verify the assumption that stresses decay 
rapidly at points away from the contact zone. This insures that the 
assumption that the vertical surface of the quarter roll cover consid
ered is traction-free does not introduce any significant error in the 
computed results. 

Fig. 7 depicts the deformed surface of the roll cover. Because of 
symmetry, only half of the deformed surface is shown. Also due to 
different scales along the horizontal and vertical axes, the undeformed 
roll cover as well as the indentor plot as ellipses. The radius of cur
vature of the deformed surface changes near the point where rubber 
leaves the indentor. 

For plane strain deformations of Mooney-Rivlin materials, one can 
show that [14] the values of displacement and components an, (T22, 
and 0-12 of the Cauchy stress depend upon the material constants Ci 
and C2 only through their sum C\ + Ci. Thus results presented herein 
are valid for all values of C1/C2 so long as the sum Ci + Ci is kept 
fixed. The values of the hydrostatic pressure p and the stress 0-33 
normal to the plane of deformation do depend upon Ci/C2 even when 
(Ci + Ci) is constant. 

Further extension of this work should involve the inclusion of the 
effects of friction at the contact surface, slipping at some points on 
the contact surface, and the deformations of the core and the in
dentor. 
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On the Singular Eigenfunctions for 
Plane Harmonic Problems in 
Composite Regions 
This paper is concerned with the singular behavior of harmonic functions at the vertex 
of a plane, composite, wedge region. Separable harmonic functions which include loga
rithmic terms are investigated for their possible existence in the vicinity of the vertex. The 
eigenequations governing existence are examined and explicit determination of the singu
lar eigenvalues made for several combinations of boundary and interface conditions. The 
results enable an appreciation of the possible singular nature in such problems which aids 
any complete (numerical) analysis. 

Introduction 
Harmonic problems are capable of a number of physical interpre

tations, some of which may be set in composite regions. In this event 
the subregion interfaces, together with any abrupt changes in . 
boundary conditions, can lead to functions which are unbounded in 
themselves or which have unbounded derivatives at the discontinuity. 
Such singular functions can prove troublesome in a numerical treat
ment—indeed it is quite reasonable to define singular behavior, with 
respect to a given numerical method, as that which gives rise to poor 
convergence. Hence it is advantageous in these situations to have an 
analytical understanding of the singularities present in order to devise 
numerical approaches with enhanced convergence and accuracy (see, 
for example, Strang and Fix [1, Chapter 8] or Jaswon and Symm [2, 
Chapter 12]). 

In contrast to its biharmonic counterpart in elasticity which has 
been the subject of a considerable number of investigations (e.g., Bogy 
[3]), the derivation of singular eigenfunctions for harmonic problems 
in composite regions appears to have received little attention. Birkhoff 
[4], and some of the references contained therein, address related 
issues and Rao [5] and Fenner [6] determine singular eigenfunctions 
for a restricted range of geometries and boundary conditions. How
ever, no explicit characterization of the singular harmonic nature for 
a general composite setting subjected to a full range of boundary 

. conditions has been presented. Accordingly we seek to furnish this 
information here. In view of the variety of boundary conditions en-
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countered therein, we consider heat transfer to be the physical ap
plication of our analysis and follow the approach initially developed 
by Williams [7] for the biharmonic problem to determine singular 
eigenfunctions for a range of composite harmonic problems. 

Formulation 
We begin by formulating the class of harmonic problems of concern, 

interpreting them within the context of steady-state heat transfer. 
To this end let (rfl) denote the cylindrical polar coordinates of an 
arbitrary point P with respect to an origin 0 and within the composite, 
plane, wedge region 31 defined by 

n = nx u 3i% (i) 
# i = |(r,0) | 0 < r < oo,0 <0<a], 

ft2 = \(.r,6) | 0 < r < » , - 0 < 8 < 0|,J 

where -7?i,-7?2 are the two subregions comprising Ji and afi are their 
respective vertex angles (Fig. 1). The equation governing the tem
perature distribution <j> = <p(r,8) throughout 31, under steady-state 
heat transfer, is 

(2) 

V24> = 0 o n » , (3) 

where V2 : Hd/dr(rd/dr)) + r~2d2/d02 is the Laplacian operator 
in cylindrical polar coordinates. 

On each of the wedge faces at 6 = a and 8 = —/}, <f> is to satisfy one 
of the following homogeneous boundary conditions: 
A Temperature Prescribed 

B Insulated Boundary 

0 = 0, 

dtj) 

d8 

(4) 

(5) 
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Fig. 1 Blmaterial wedge region 

C Convection Cooling 

<t> + — — = 0, (6 
r 08 

D Radiation Condition 

0 4 + - i - £ = 0. (7) 

Here ke is the ratio of the conductivity of the material forming the 
wedge face to the exterior conductivity, and ks is the material con
ductivity divided by the product of the Stefan-Boltzmann constant 
and the emissivity of the surface.1 In what follows these boundary 
conditions are referred to merely by their associated letters. 

The two subregions are in intimate contact along the interface at 
8 = 0 so that the temperature and heat flux are to be matched there 
and consequently 

<P(r,0+) = 0(r,O-), K1^(r,0+) = K2^(r,0-), (8) 
00 00 

where K\,Ki are the conductivities in Jl\,3ii, respectively. Generally 
the two subregions have distinct conductivities. In the event that the 
wedge region 31 is closed and the faces at 8 = a and 8 = —ft coalesce 
to form a second interface, the boundary conditions on the wedge faces 
are replaced by a further pair of matching conditions, namely 

* ( r , a ) - * ( r , - 0 ) , K x ^ ( r , a ) - J f , ^ ( r , - j 8 ) . (9) 
oo oo 

Finally we adjoin the singularity requirements on <t> in the vicinity 
of the wedge vertex which insist that 

0 = O(lnr) , r/<t> = o(l), as r — 0 . (10) 

The first of these is physically motivated, precluding unbounded 
temperatures with the exception of an isolated heat source (sink) 
whereat the temperature becomes logarithmically infinite: the second 

1 Boundary condition C, which has its genesis in both Newton's law for con
vection cooling and in an approximation to boundary condition D, is more 
usually termed the "radiation condition:" here, instead, the use of this de
scription is reserved for D to distinguish it from C. For a full discussion of the 
various heat-transfer boundary conditions, see Carslaw and Jaegar [8, pp. 
12-18]. 

insures that, except for the instance 4> independent of r, d<j>/or is un
bounded at r = 0 thus confining the extent of the eventual search for 
singular eigenvalues. Observe that, in the absence of any regularity 
requirements at infinity, or, without the insertion of an additional 
boundary away from r = 0 so as to render Ji bounded together with 
the specification of a boundary condition there, none of the 11 prob
lems that may be drawn from the class described are completely for
mulated. However, the primary function of this class is to characterize 
the possible local behavior of 4>, within the range admitted by (10), 
in the vicinity of the wedge vertex. Whether or not such behavior is 
present in a specific problem will depend upon the actual conditions 
remote from r = 0. Observe further that, if the local boundary con
ditions were to be inhomogeneous, then any behavior of <t> determined 
for the analogous homogeneous problem is a candidate for inclusion 
in the complete 0 for the inhomogeneous problem. 

Separation-of-Variables Solutions—Conditions for 
Existence 

Here we consider a set of separable harmonic functions and seek 
conditions for their satisfaction of a general combination of boundary 
and interface conditions. The set stems from the basic separable so
lution to (3), 

(j> = r\ai sin \6 + 6; cos X0) on Sii (i = 1,2). (11) 

In (11), ai,bi (i = 1,2) are constants and X may be interpreted as a 
singularity parameter since it dictates the singular nature of 0 as r 
-* 0. Letting X = £ + it] in (11), £ and r\ real, generates a complex so
lution the real and imaginary parts of which furnish an additional four 
independent solutions. For example 

(j> = a,rf [cos (?) In r) sin £0 cosh ?70 

- sin (i; In r) cos £0 sinh ??0] on Jti (i = 1,2). (12) 

With a view to examining logarithmic behavior we differentiate (11) 
with respect to X to derive the last solution in the set, 

<j> — rx[ln r(ai sin X0 + 6; cos \6) 

+ 6{.<n cos \8 - bi sin X0)] on # ; ( i = l,2). (13) 

Note that all of the foregoing solutions meet the singularity require
ments (10) provided 

0 « R e X < l . (14) 

Now turning to the conditions under which these solutions fulfill 
an acceptable combination of boundary and interface conditions, we 
first treat solution (11): substituting from (11) into two boundary 
conditions from (4)-(7) and the two interface conditions (8), or sub
stituting into the four interface conditions (8) and (9), yields a system 
of four homogeneous equations containing the vector of unknown 
constants c = (01,61,02,62), viz., 

Be = 0; (15) 

where B is a 4 X 4 matrix. For a nontrivial solution to (15) the deter
minant of B,D, must satisfy 

3 = 0. (16) 

For any specific problem, X) is a function of X alone and hence the 
particular value(s) of X complying with (14) such that (16) holds de
termines the admissible solution(s) of type (11) to that problem. In 
this light X, the singularity parameter, may be regarded as a singular 
eigenvalue of the eigenequation for the problem resulting from spe
cializing (16). 

Extension of the preceding argument to solutions of type (12) 
merely requires that we find a complex singular eigenvalue for (16) 
complying with (14). This pair of conditions is the harmonic coun
terpart to the conditions for the biharmonic problem established by 
Williams [7,9] within the context of plane elasticity. 

For logarithmic solutions, we supplement (13) with a solution of 
type (11), distinguished from (13) by primed constants, substitute 
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in the boundary and interface conditions and exploit the fact that 
these conditions hold for all r to arrive at 

A-B 

dB 
Be = 0, — c + Be' 

d\ 
••o, (17) 

wherein c' = (ai',bi',a2',b2). A logarithmic solution requires that c 
^ 0; conditions for a nontrivial c for the system in (17) are derived 
in the Appendix of Dempsey and Sinclair [10] and are that 

d 4 - m 3 

m < 4, = 0, 
d\4~m 

(18) 

where m is the rank of the matrix B. 
No attempt is made here to argue the ability of (11)—(13) to com

pletely characterize the nature of <j> in the vicinity of the wedge vertex 
within the limits defined by (10). Indeed a further possible solution 
can readily be devised from (13) by allowing X to be complex therein. 
However the conditions for this last, and other similar solutions, 
contain those of (16) and (18), thus implying that the solution forms 
selected are the natural ones to pursue first. Moreover, significantly 
different solutions, such as <J> of the form r^0)g(9), cannot be easily 
constructed. 

Eigenequations 
By expanding the associated determinants we next establish eig

enequations for the class of problems formulated earlier. Since all 
these problems contain the interface conditions (8), we can write 

c2 = Tci, 

r = x| 
K0\ 

oil 

(19) 

(20) 

where c; = (a,,6,) (i = 1,2) are vectors, K = K1/K2, and T may be in
terpreted as a transfer matrix in as much as it transfers information 
across the interface. On selecting two boundary conditions from 
(4)-(7), or on taking the additional interface conditions (9), and 
substituting for c% via (19), the boundary and interface conditions 
reduce to a 2 X 2 system hence facilitating the determinant expan
sion.2 While this technique has only a marginal advantage over simply 
expanding the determinants of order four in bimaterial problems, 
extension of its application to n -material problems yields substantial 
simplification since then one can expand determinants of order two 
versus expanding determinants of order 2n. Accordingly, as an aside 
here, we indicate how the extension to rc-material problems pro
ceeds: 

I I TiCi, 
i=n-l,. . . 

(21) 

_ x[sin2 Xa; + Ki cos2 Xa;(l - K;) sin Xa; cos Xa; \ 

\(1 — Ki) sin Xa; cos Xa,- K; sin2 Xa; + cos2 Xa;/ 

wherein K; = Ki/Ki+i and the interface between ^?; and y?;+i occurs 
at 6 = a;. 

Now returning to the class of problems at hand and applying the 
expansion technique to those involving boundary conditions A/B 
furnishes: 

A-A 

B-B 

'D = X[sin Xa cos X/3 + K sin X/3 cos Xa], 

'D = \3[K sin Xa cos X/3 + sin X/3 cos Xa], 

(23) 

(24) 

3) = X2[K sin Xa sin X/3 — cos Xa cos X/3]. (25) 

In the last, A holds on 6 = —ft, B on a = a. 
For problems entailing conditions C/D, the inhomogeneity in r of 

these boundary conditions requires an infinite sum of separable so
lutions of the form3 

<t> = E r>-i[(K(i - 1) + 2 - i)aj sin \j6 
J-o 

+ bj cos \j6] on fti (i = 1,2), (26) 

where 

V 

X/ = X + j for 

•• 4J\ + (Ai - l ) /3 

C, 

for D. 

(27) 

(28) 

On substituting (26) into the boundary conditions, the r~lixj>li)d terms 
of (6) and (7) dominate and thus the determinant expansion is the 
same as that corresponding to boundary condition B. That is, th ei
genequations for problems with boundary conditions C/D are iden
tical to the eigenequations found on exchanging all the C and D 
conditions for B. However this is only true provided the higher-order 
terms in r satisfy the boundary conditions. Insisting that they do so 
generates the following set of requirements, which essentially insure 
the existence of a recurrence relation between the j — 1 and j terms 
of (26): 

For A - C/D 

U = 1,2,. 
0' = 0,1,. 

0' = 1,2,. 
0' = 0,1,. 

..), 

• • ) , 

(29) 

(30) 

cot Xa cot X/3 ^ cot \j<x cot \jft 

0 < IcotXyacot A;/?| < °° 

For B/C - B/C, B/D - D4 

cot Xa tan X/3 ^ cot X/a tan X//3 

0 < |cotX,-atanX;/3| < » 

In some cases, relaxation of (29) and (30) is possible; in the interests 
of brevity we do not enumerate all such special cases here.6 

Finally, expanding the determinant for the closed wedge (i.e., the 
wedge under (8) and (9)) gives 

» = X2[(K2 + 1) sin Xa sin X(2ir - a) 

+ 2K(1 - cos Xa cos X(2TT - a))]. (31) 

The determinants in (23)-(25) and (31), when set to zero, constitute 
the complete set of eigenequations for investigation next. 

Singular Eigenvalues—Special Cases 
We commence our study of the singular eigenvalues for the ei

genequations derived thus far by analyzing the two special cases of a 
homogeneous region and a bimaterial region in which the two sub-
regions have equal vertex angles—these two instances having simple 
expressions for the eigenvalues. First, the homogeneous case. Setting 
'D = 0, K = 1 in (23)-(25) and selecting the eigenvalues satisfying the 
singularity requirements (10), or equivalently (14), yields: 

A-A, B/C - B/C, BID - D 

X = w/y (IT < K < 2-rr), 

A - B/CID 

X = 71-/27 (TT/2 < 7 « 2TT), 

X = 3TT/27 (3TT/2 < 7 « 2TT), 

(32) 

(33) 

2 Notice that (20) has an extra X multiplier over the expression resulting from 
rearranging (8) so as to insure exactly the same A-power factor as the original 
4X4 determinant. 

3 The 0 of (26) satisfies the interface conditions (8). 
4 We do not permit problems containing both C and D since to date it has 

not been possible to construct infinite series which can satisfy both boundary 
conditions simultaneously. 

6 When (29) and (30), or their equivalents are not satisfied, separable solutions 
of the form (26) do not exist for problems with boundary conditions C/D. 
Vasil'ev [11] treats such a case for a homogeneous wedge subject to C — C using 
the Mellin transform and finds it free from singular behavior. 
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Fig. 2 Singular eigenvalues for the open wedge, a = 30°, 60°, a + /9 : 

180° 

0.8 

Fig. 3 Singular eigenvalues for the open wedge, a = 30°, 60°, 90°, 0 = 
180° 

where y = a + /3.6 The second of these features two singularities 
within the range admitted by (14). The requirements for the existence 
of the infinite series such that boundary conditions C/D are met re
duce to 

sin Xy7 ^ 0 (/' = 1,2, . . •), 

cos X/7 ^ 0 (;' = 1,2,. . .). 

(34) 

(35) 

for X as in (32) and (33), respectively. The associated eigenfunctions 
are derived directly on introducing the eigenvalues into (11) and (26) 
with K = 1 and choosing the constants appropriately. 

There are no complex eigenvalues for the homogeneous region: this 
observation follows immediately on inspection of the real and imag
inary parts of the D of (23)-(25) with K = 1, X = £ 4- it]. Considering 
the possibility of a logarithmic multiplier, we note that none of 
(23)-(25) with K = 1 have repeated roots away from X = 0 so that there 
is no way of satisfying (18) for X ̂  0. For the X = 0 root, only B/C -
BIC and B/D — D have sufficient multiplicity to fulfill (18) and thus 
allow the possibility of a logarithmic singularity.7 Construction of such 
an eigenfunction is straightforward for B — B, and for B/C - C pro
ceeds on taking 

<t> = Y, r J[a ;(ln r cos j8 — 8 sin j8) + jbj(\n r sin j6 + 6 cos jd) 

+ a / cos j6 + bj' sin jd] on 31, (36) 

and complying with (34) for Xy = j . However it is not apparent at this 
time how to construct a logarithmic eigenfunction for problems 
containing condition D. 

For the second special case, setting X) = 0, a = /3 in (23)-(25) gives 
rise to the same admissible singular eigenvalues for A — A, B/C — B/C, 
B/D - D as in (32), provided (30) holds when C/D is involved, but for 
A - B/CID gives 

"The singular behavior characterized by (32) and (33) has been noted in 
conjunction with boundary conditions A/B by a number of investigators; see 
for example, Fox and Sankar [12], 

7 One expects a logarithmic singularity when basically the boundary condi
tions set dtp/dQ = 0 because heat sources (sinks) produce heat flow in the radial 
direction alone. 

X = a - 1 co t - 1 K (cot - 1 K < a < w), 1 

X = a-1(Tr — cot-1/c) (w — cot_1/c < a < 7r),J 

provided (29) holds when C/D is involved. Again no complex eigen
values exist and logarithmic eigenfunctions are restricted to when X 
= 0 in B/C — B/C and in the closed wedge (see (31) with a = r). The 
closed wedge in this case has no other singular eigenfunction. 

Singular Eigenvalues—Numerical Results 
To complete our investigation of the singular eigenvalues we treat 

a range of configurations which, in conjunction with the special cases 
already analyzed, exemplifies the possible singular character admitted 
here. Geometries in this range typically require numerical evaluation 
of the singular eigenvalues which is readily accomplished using an 
inverse approach; that is, by assuming a value of X satisying (14) and 
determining the associated value of K such that (23)/(24)/(25) are zero. 
Clearly, from the form of (23) and (24), the answers so determined for 
problem A — A are the same as for B — B if one interprets K as Ki/K\ 
in the latter instance. Thus, on recalling the equivalence of B,C,D, 
there are in essence two distinct combinations of boundary conditions 
which we designate as: 
Pure 

A-A, K = KJKi, 

B/C - B/C and. B/D - D, K = K2/Kly 

and Mixed 

A -BIC/D, 
K = KJK2 if A holds on 9 = - / : 

K = Ki/K\ if A holds on 8 = a. 

(38) 

(39) 

The term pure reflects the fact that (38) in effect involves the speci
fication of <f> or d<l>/dd whereas the mixed conditions of (39) entail 
specifying <p and d<l>/dd. Figs. 2-6 present the singular eigenvalues for 
these two sets of boundary conditions delineated by solid and broken 
lines for the pure and mixed sets, respectively. Generally the mixed 
problems are more singular than the pure within the spectrum of 
singular character admitted by (10). 

After a little algebra it may be proven that no complex eigenvalues 
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Fig. 5 Singular eigenvalues (or the open wedge, a = 30°, 60°, 90°, a + (3 Fig. 7 Singular eigenvalues (or the closed wedge, a = 30°, 150°, a + ft = 
= 360° 360° 

occur here and that the conditions for a logarithmic behavior are again 
solely met when X = 0, giving rise to simple log singularities in B/C 
-B/C. 

Fig. 7 demonstrates the variation of the singular eigenvalue for the 
closed wedge which also can have a simple log singularity. 

Concluding Remarks 
A number of singular eigenfunctions have been generated for har

monic problems in plane bimaterial wedges under a variety of 

boundary and interface conditions in the vicinity of the wedge vertex. 
It should be emphasized that whether or not these eigenfunctions are 
excited in a particular problem is governed by the conditions away 
from the vertex. Also, the completeness of the eigenfunctions found 
is not established, although it is anticipated that they probably em
body most of the singular character possible in such problems. 

Extension of the analysis presented to problems involving other 
boundary /interface conditions and to regions comprised of more than 
two materials is straightforward. Moreover, the eigenfunctions adapt 
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CALL FOR PAPERS 

SYMPOSIUM ON MECHANICS OF SUPERCONDUCTING 
SOLIDS AND STRUCTURES 

ASME Winter Annual Meeting 
Chicago, Illinois 

November 16-20, 1980 

The Applied Mechanics Division of ASME will sponsor a symposium on superconducting solids and structures to be or

ganized by Professor F. C. Moon of Cornell University. 

Superconducting materials are finding increasing applications in large devices such as magnets for fusion reactors, 

high energy physics devices, MHD reactors, motor-generators, and levitating vehicles. New and important problems involving 

the mechanics of these materials and structures have been studied recently and many remain to be explored. Prospective 

participants in this symposium are encouraged to submit papers relating to this field including such topics as 

1 Constitutive modeling of superconducting materials. 

2 Magnetically induced stresses in superconducting structures. 

3 Magnetoelastic stability of superconducting structures. 

4 Interaction of strain and critical current-critical field relations. 

5 Wave propagation and dynamic effects in superconducting materials. 

6 Inelasticity and fracture in superconducting materials. 

Papers should be mailed to 

Professor F. C. Moon 

Thurston Hall 

Cornell University 

Ithaca, New York 14850 

by April 15th, 1980 for review. 

Papers accepted for the symposium will appear in a bound volume to be available at the meeting. 

Authors who wish to make a brief presentation of research abstracts at this symposium should send a two-page summary 

by April 15, 1980, for review. 

92 / VOL. 47, MARCH 1980 Transactions of the ASME 

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



K. J. Bathe 
Associate Professor. 

C. A. Almeida 
Graduate Student. 

Department of Mechanical Engineering, 
Massachusetts Institute of Technology, 

Cambridge, Mass. 02139 

A Simple and Effective Pipe Elbow 
Element—Linear Analysis 
The formulation of a new, simple, and effective displacement-based pipe bend element is 
presented. The displacement assumptions are axial, torsional, and bending displace
ments that vary cubically along the axis of the elbow with plane sections remaining plane, 
and a generalization of the von Karman pipe radial displacement patterns to include the 
ovalization effects. The amount of ovalization varies cubically along the elbow with full 
compatibility between elbows. The pipe bend element has been implemented, and the re
sults of various sample analyses are presented, which illustrate the effectiveness of the 
element. 

1 Introduction 
The structural integrity and cost of pipelines are of major concern 

in the nuclear, oil, and various other industries. Pipelines can be 
subjected to severe thermal, seismic, and other mechanical loads, and 
for these reasons, an increasing amount of attention has been given 
to their analyses [1], 

In the analysis of pipelines it is convenient to distinguish between 
the straight and curved portions of the pipe. The straight portions 
of the pipeline can, in general, be adequately represented by simple 
beam elements with circular cross sections. However, the bend com
ponents of the pipe are much more difficult to analyze, because, in 
addition to undergoing the usual beam deformations, the pipe bends 
also ovalize. This ovalization affects the flexibility of a pipe bend a 
great amount and must be properly modeled in the analysis [2-8]. 

Because of the importance and the difficulties that lie in the anal
ysis and design of pipe bends, much research has been devoted to the 
study of their structural behavior. In these investigations, during 
recent years, also various simple to complex finite-element models 
of pipe bends have been proposed. However, all these structural 
models have serious limitations either with regard to their accuracy 
in predicting pipe stresses and displacements or the cost of using 
them. 

The simplest and widely used approach in the linear analysis of 
pipelines is to model a pipe bend using simple curved beam theory 
and scale the stiffness constants and calculated stresses using factors 
that account for the ovalization of the pipe cross section and the pipe 
internal pressure [5], If the effect of the internal pressure can be ne-
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glected, the constants used in this analysis are, in essence, the von 
Karman flexibility and stress-intensification factors [6]. These con
stants were derived by von Karman for in-plane loading and later by 
Vigness using the von Karman analysis procedure for out-of-plane 
loading [2] with a number of assumptions. A major point is that von 
Karman considered a differential length of the elbow in which the 
internal bending moment is constant. Therefore, if the factors are 
applied to a complete elbow, it is assumed that the ovalization is 
constant along the pipe bend. The conditions of a varying magnitude 
in the internal bending moment and the fact that there may be no 
ovalization at the end of the elbow cannot be taken into account with 
accuracy. 

Because of the limitations of the foregoing beam analysis of pipe 
bends various refined analytical and finite-element models have been 
proposed [5,7]. In essence, these models use shell theory to describe 
the behavior of the pipe bend. Clark and Reissner proposed equations 
that treat pipe bends as part of a torus and proposed an asymptotic 
solution for the stress and flexibility factors [8]. This approach re
moves some of the assumptions of the von Karman analysis but is not 
effective in the analysis of general pipelines. The greatest potential 
for the general analysis of pipe bends lies in the use of the finite-ele
ment method [9]. Pipe elbows are currently being modeled using 
three-dimensional elements, general shell elements, and special 
elbow-shell elements [10-13]. Using either three-dimensional or 
general shell elements, in theory, any elbow can be modeled very ac
curately by using a fine enough finite-element mesh. However, in 
practice, such an analysis of a simple elbow involves typically of the 
order of a thousand finite-element equilibrium equations that need 
be operated upon, which means that the linear analysis of a single 
elbow is very costly, the nonlinear analysis of a single elbow is pro
hibitively expensive and the nonlinear analysis of an assemblage of 
elbows is clearly beyond the current state-of-the-art of computational 
tools. 

In order to reduce the number of finite-element variables special 
elbow-shell elements have been proposed [12]. Although these ele
ments are more cost-effective in use, they still involve a relatively large 
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(a) COORDINATE SYSTEMS USED 

INTRADO_S 

ELBOW AXIS 

(b) DISPLACEMENTS OF DEFORMED CROSS SECTION (FIRST 
VON KARMAN MODE; w> IS SHOWN NEGATIVE) 

Fig. 1 Coordinate systems and displacements of elbow 

number of solution variables and are subject to some major short
comings, for example, the axial variation of the magnitude of ovali-
zation is still neglected [12], or the rigid-body mode criterion is not 
satisfied [13]. 

The objective in this paper is to present the formulation of a new 
elbow element that is simple and effective and predicts accurately the 
significant deformations and stresses in various curved pipe segments. 
The elbow element is a four-node displacement-based finite element 
with axial, torsional, and bending displacements and the von Karman 
ovalization deformations all varying cubically along the elbow length. 
The formulation of the element is a very natural extension and gen
eralization of von Karman's pioneering analysis [6]. In essence, von 
Karman analyzed in his work a differential length of pipe using the 
Ritz method to calculate the flexibility and stress-intensification 
factors. Because of the lack of the digital computer, von Karman could 
only consider in the Ritz analysis the hoop direction of the pipe, but 
it is interesting to note that von Karman "urges us engineers to be
come familiar with the Ritz method, because the method is simple and 
ideal to develop approximate solutions to complex practical problems" 
(quoted from reference [6]). The formulation of the new elbow element 
presented here extends the work of von Karman in that we use the 
Ritz method (the displacement-based finite-element method) to take 
also the axial variation of ovalization accurately into account, and 

. relax some other von Karman assumptions. The actual analysis pre
sented here is only possible because the digital computer is available 
and the analysis is performed efficiently using finite-element nu
merical procedures [9]. 

In this paper we consider only the linear analysis of piping systems. 
However, the full potential of the element lies in the geometric and 
material nonlinear analysis of pipes, because the element is very 
cost-effective and indeed allows an accurate nonlinear dynamic 
analysis of assemblages of pipe bends. The nonlinear formulation of 
the element, to be presented later, is based on the procedures given 
in [14,15]. 

In the next section of this paper we briefly review the von Karman 
analysis with emphasis on the important concepts that we employ in 
the finite-element formulation of the new pipe elbow element. This 
formulation is presented in Section 3 of the paper. The elbow element 

has been implemented in the computer program ADINAP [16], and 
in Section 4 we present the analysis results of some problems that 
demonstrate the validity of the element. 

2 The Theory of von Karman 
The formulation of the pipe elbow element can be regarded as an 

extension of the von Karman analysis, the major concepts of which 
are for completeness briefly summarized in this section. 

2.1 von Karman Assumptions. In his analysis of pipe elbows 
von Karman recognized that in addition to the usual curved beam 
theory strain components, two additional strain components also need 
be considered that are due to the ovalization of the cross section; see 
Fig. 1. These strain components are a pipe cross-sectional circum
ferential strain, (€JJ)OU) which is due to the deformation of the cross 
section, and a longitudinal strain, (€vn)ou, which is due to the change 
in the curvature of the pipe itself. Corresponding to the usual strain 
components, the von Karman analysis is based on the following major 
assumptions. 

1 Plane sections originally plane and normal to the neutral axis 
of the pipe are assumed to remain plane and normal to the neutral 
axis. 

2 The longitudinal strains are assumed to be of constant magni
tude through the pipe wall thickness. 

3 The circumferential strains are assumed to vanish at the middle 
surface of the pipe wall, and are due to pure transverse bending of the 
pipe wall. Hence the pipe wall thickness is assumed to be small in 
comparison to the pipe external radius; i.e., 8/a « 1. 

4 The pipe external radius is assumed to be much smaller than 
the radius of the pipe bend; i.e., a/R « 1. 

5 The effect of Poisson's ratio is neglected. 

Using assumption 3, a relation can be written between the radial 
and circumferential displacements of the middle surface of the pipe 
wall, 

wc = d<t> (1) 

where Wf is the radial displacement, w^ is the tangential displacement 
and </> measures the angular position considered as shown in Fig. 1. 

2.2 von Karman Analysis. In his analysis von Karman estab
lished the strain energy in an element of pipe that is subjected to a 
constant bending moment, and used the Ritz method to estimate the 
amount of ovalization. 

Using the assumptions previously summarized, the longitudinal 
strains due to the distortion of the cross section are 

\£t}T})ou : 

R 
(2) 

where R is the pipe bend radius and WR is the local displacement of 
the pipe wall in the bend radial direction, see Fig. 1. Also, the tan
gential strain component is 

d2wt 
W{ + - f (3) 

where a is the radius of the pipe and f is the local coordinate in the 
pipe wall, see Fig. 1. 

Using equations (l)-(3) and assumptions 1-5, the total strain en
ergy of an elbow of angle a is 

Ea5R r« 
V = -

\s: IAa\ 1 / dwc V 
a cos <i> H— \wt sin <l> -I cos $ 

\RaJ R\ d<f> I. 
I I I 4 

TERM 1 TERM 2 

d<j>, 

I 2W52 ' 1 WiDf d3w£ 

a2[d<p d</>3 d<l> dd (4) 

TERM 3 
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Table 1 Number of ovalization shape functions to be 
used in Ritz analysis (and elbow formulation) 

Geometric range 

X > 0.5 

0.16 < X < 0.5 

0.08 < X < 0.16 

0.04 < X < 0.08 

Number of functions N 

1 

2 

3 

4 

where <5 is the pipe wall thickness, E is the Young's modulus of the 
material and Aa is the cross-sectional angular rotation. In equation 
(4) TERM 1 corresponds to the curved beam theory longitudinal 
strain, and TERM 2 and TERM 3 correspond to the straining that 
is due to ovalization. 

The only variable in equation (4) is the displacement w^. To esti
mate this displacement von Karman assumed for in-plane bending 
of the elbow 

«>j = £ c; sin 2ruj> (5) 

and performed a Ritz analysis to obtain the parameters c;. The va
lidity of the von Karman trial functions in equation (5) has been 
substantiated by experiments [2-4]. 

Considering the von Karman analysis, a geometric pipe factor X, 
where X = R6/a2, plays an important role in the determination of the 
number of trial functions that should be included in the analysis. 
Table 1 summarizes the number of trial functions that need be used 
for different values of X in order to obtain satisfactory results. 

Considering the von Karman analysis, it may be noted that as
sumptions 2, 4, and 5 are not used in the formulation of the elbow 
element presented in the next section. 

3 Finite-Element Formulation of the Elbow Element 
The analysis of a general assemblage of finite elements consists in 

essence of the formulation of the equilibrium equations of each in
dividual element and the subsequent application of general solution 
procedures that are independent of the type of element considered 
[9]. Therefore, in the following discussion, we only need to focus our 
attention on the derivation of the equilibrium equations of a typical 
elbow element. 

Using the principle of virtual work (or principle of minimum total 
potential energy) to derive the equilibrium equations that govern the 
linear response of a general finite element, we obtain [9] 

KU = R (6) 

where K is the stiffness matrix of the finite element corresponding to 
the element nodal point degrees-of-freedom listed in U, 

X BT C Bdv (7) 

and R is the effective nodal point load vector [9]. In equation (7) B is 
the strain-displacement matrix, and C is the corresponding stress-
strain matrix [9]. Considering the pipe elbow element we therefore 
only need to establish the B matrix and discuss how the integration 
in equation (7) is performed efficiently. 

3.1 Evaluation of the Strain-Displacement Matrix. Using 
the concepts of finite-element analysis, we need to describe the ge
ometry and variations of internal element displacements of a typical 
pipe element in terms of its nodal point quantities. Fig. 2 shows a 
generic pipe elbow element with the assumed four nodal points. To 
establish the geometry and displacement interpolation functions of 
the element, assume first that the pipe cross section does not ovalize. 
In this case the coordinate and displacement interpolations are as used 
in the isoparametric finite-element formulations of beam, plate, and 
shell elements discussed in [15,17-20]. For completeness of the for
mulation of the elbow element we briefly summarize first the iso-

Fig. 2 Geometry of pipe elbow element 

parametric beam element formulation that does not include ovali
zation. 

3.1.1 Element Geometry and Displacement Interpolations As
suming no Ovalization. The basic assumption in this formulation 
is that plane sections originally normal to the center-line axis of the 
pipe element remain plane but not necessarily normal to the center-
line axis. Thus we can write the following equations for the coordinates 
of a point in the element before and after deformation: 

lXj(r, s, t) • £ hk <xk + t £ akhk [Vha + s £ akhk 'Vk
si 

k=i k=i k=i 

i = 1, 2, 3 (8) 

where 

r, s, t = isoparameteric coordinates [9] 
lxi = Cartesian coordinate of any point in the pipe ele

ment 
hk (r) = isoparametric interpolation functions 

[x\ = Cartesian coordinate of nodal point k 
ai, = outer radius of element at nodal point k 

'Vti =, component i of unit vector 'V*, in direction t at 
nodal point k 

lVki = component i of unit vector 'v*, in direction s at 
nodal point k, 

and the left superscript / denotes the configuration of the element; 
i.e., / = 0 denotes the original configuration, whereas / = 1 corresponds 
to the configuration in the deformed position. 

The interpolation functions hk (r) used in equation (8) are derived 
in [9, pp. 127-130], and are summarized in Fig. 3. In the application 
of equation (8) it must be noted that the structural cross section 
considered is hollow, meaning that equation (8) is only applicable for 
the values of s and t that satisfy the equation 

1 - <s2 + t2 < 1 (9) 

where 6k and a/, are the wall thickness and the outside radius of the 
element at nodal point k. This fact is properly taken into account in 
the numerical integration to obtain the stiffness matrix of the element 
(see Section 3.3). 

To obtain the displacement components at any point r, s, t in the 
pipe we have 

ui(r, s, t) = lxi — °Xi 

Thus, substituting from equation (8), we obtain 

4 4 4 

ui(r, s,t) = £ hkuf + t £ ahhkVk
ti + s £ akhkV

h
sl 

A = l k=l k = l 

where 

(10) 

(11) 
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v \ \ \ \ \ \ \ \ \ \ S 

4 nodal points 
24 degrees of freedorr 

h, - [ - 9 r 3 + 9 r 2 + r - l ] / I6 

h2 - [ 9 r 3 + 9 r 2 - r - l ] / 16 

h3 = [ 2 7 r 5 - 9 r 2 - 2 7 r l - 9 ] / l 6 

h4 . [ - 27 r 3 - 9 r 2 +27r+9 ] / l 6 

Fig. 3 Degrees-of-lreedom and Interpolation functions of pipe without ova-
lization 

CUBIC INTERPOLATION 
(ONLY FIRST VON KARMAN 
MODE IS SHOWN) 

w. = C| sin 2 $ 

(o) ASSUMED VARIATION OF OVALIZATION ALONG ELBOW 

(b) SECOND AND THIRD VON KARMAN MODES 

Fig. 4 Ovallzation modes used in elbow formulation 

vii = wi, - °vfj 

V*. = 1V». _ 017*. 
' s i 'SI ' m (12) 

For the finite-element solution we express the components V*,- and 
V*; in terms of rotations about the global axes °xi, i = 1,2,3; namely, 
we have 

(13) 

where Bk is a vector listing the nodal point rotations at nodal point 
ft, see Fig. 3, 

0* (14) 

Thus, substituting from equations (13) and (14) into equation (11), 
we obtain an equation that gives the displacement components u, (r, 
s, t) in terms of the nodal point displacements uk and rotations dh, i 
= 1, 2, 3 and ft = 1, 2, 3,4. 

3.1.2 Element Displacement Interpolations Including Ovall
zation. The displacement interpolations in equation (11) assume 
that the cross section of the pipe does not deform. To include the ef
fect of ovahzation we use the displacement patterns suggested by von 
Karman and others [2,3,5, and 6], and interpolate these displacement 
patterns cubically along the length of the elbow, see Fig. 4. Considering 
in-plane and out-of-plane action we use 

Nc 4 Nd 4 , 
ui((r, 0) = E E hkci sin 2m0 + E E hhd

h
n cos 2m<f> (15) 

in-plane bending out-of-plane bending 

where the ch
m and dj , , ft = 1, 2, 3, 4, are the unknown generalized 

ovahzation displacements. Depending on the pipe geometry, and the 
type of loading, it may be sufficient to include only the first, or first 
two, term(s) of one (or both) double summation(s) in equation (15), 
as discussed in Section 2.2 (see Table 1). In the implementation of the 
element we have allowed Afc to be 0 (no ovahzation), 1, 2 or 3, and 
similarly for N^. 

The total pipe elbow displacements are the sum of the displace
ments given in equation (11) and equation (15). Thus a typical nodal 
point of a three-dimensional elbow element can have from 6 to 12 

degrees of freedom at each node, depending on whether the ovahza
tion displacements are included, and which ovahzation patterns are 
used. 

3.1.3 Displacement Derivatives. With the geometry and dis
placement interpolations given in equations (8), (11), and (15), in 
essence, standard procedures can be used to evaluate the appropriate 
displacement derivatives that constitute the elements of the strain-
displacement matrix. Based on the discussion in Section 2.2 the 
complete strain-displacement relations for both in-plane and out-
of-plane bending of the element can be written as 

(16) 

611 

7,{ 

* { { _ 

4 

= E 
h=l 

B* 

0 

R* 

R* 

R* 1 
Bou3 
R* 
»ou4. 

where 

U*T = [u\ u\ U§ 6\ 6\ 0*3 | c\ Ck
2 C§ | d\ d\ d\] (17) 

In equation (16) all six ovahzation patterns of equation (15) are in
cluded, but we could use less ovahzation degrees of freedom. 

The displacement derivatives in B* correspond to the strains that 
are due to the beam bending nodal point displacements and rotations. 
Using equations (11)-(14) we have 

F 1 
Ui,r 

"... 
Ui,t 

L J 

4 

= E 
fc=i 

hk.r [1 (g)k
U (g)k2i fe)il 

hh [o (i)b
u « & ($M 

hk [0 (gfu (f)S, ©)!,] 

(18) 

where we employ the notation 

(0)* ; a/. 

(5)* = a* 

0 

°V*8 

- °v*2 

0 

°V?3 

-°vk
2 

- °v» , 
0 
v si 

— 017* 

0 

°V?1 

°vj2 

-°vfl 
0 

°vf2' 
-°Vf i 

0 

09) 

(20) 
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and 

te)?; = s(£)*+t(g)?; (21) 

To obtain the displacement derivatives corresponding to the axes 
°xi, i = 1, 2, 3 we employ the Jacobian transformation 

"r 

d°x dr 
(22) 

where the Jacobian matrix, J, contains the derivatives of the coordi
nates °xi, i = 1, 2, 3 with respect to the isoparametric coordinates r, 
s, and t [9]. Substituting from equation (18) into equation (22) we 
obtain 

E = YOUNG'S MODULUS 

I « MOMENT OF INERTIA 

3 E I 

PL 2 

2 E I 

*~ dui • ~ 

i)°Xl 
dui 

•d°X2 

dui 

_ d°*3 _ 

4 

= L 
k=i 

where 

h„.i (Gl)fi (G2)*! (G3)fc 

/»*,z (Gl)*2 (G2)*2 (G3)*2 

hk,a (Gl)*3 (G2)*3 (G3)*3 

u* 

(23) 

(Gro)*„ = («/-,? (g)*, ,-)^ + (J~i (£)*,, + J-3! (g)h
mi)hh (24) 

L/2a 

10 

100 

1,000 

10,000 

S - S - T H 

*>TH 

.00704 2 

.00007 1 

.00000 1 

.000000 

^ - * T H 

^ T H 

. 0000 

.0000 

.0000 

.0000 

Fig. 5 Analysis of cantilever straight pipe using a one element model 

Using the displacement derivatives in equation (23) we can now 
directly calculate the elements of the matrix B*; namely, equation (23) 
is used to establish the global strain components (corresponding to 
the °Xi, i = 1,2,3, axes), and these components are transformed to the 
local strain components e,„ 7„{, and y„{ to obtain the elements of the 
matrix B*. 

The elements of the matrices BJU1, BJ„2, BJ„3, and BJ„4 correspond 
to the entries labeled TERM 2 and TERM 3 in equation (4). 

Thus, using equation (15) to interpolate u>(, we have 

D o u l • 

hk 

R — a cos 4> 

a\ 02 Gt3 

0 0 0 

0 0 0 

(25) 

where 

and 

where 

and 

ai = m cos (mtj>) cos 0 + sin (mcf) sin 0 
0 = angular position in the cross section; see Fig. 1 

m = 2l 

E&2 = ^ [ i i b 2 63] 

bi = -m(m2 — 1) cos (m0)f 

B o u 3 • 
\R — a cos <l>i 

ai a-i a3 

0 0 0 

0 0 0 

where 

and 

where 

ai = —m sin (m<t>) cos 0 + cos (m<t>) sin <j>, 

B5„4 = ^ [ S 1 S 2 6 3 ] 

£( = m(m2 - 1) sin (m0)f 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

3.2 Stress-Strain Matrix. The stress-strain matrix used in the 
analysis corresponds to plane stress conditions in the £ — t] plane, i.e., 
we use 

l-v* 

1 

0 

0 

V 

0 

1 - v 

2 

0 

0 

0 

0 

1-v 

.2 

0 

V 

0 

0 

1_ 

tm 

7i£ 

"Yrf 

- f« 

(32) 
<r,{ 

where £ is the Young's modulus and v the Poisson ratio of the mate
rial. 

3.3 Numerical Integration. To evaluate the stiffness matrix 
in equation (7) we are using numerical integration. In linear analysis 
it may be possible and more effective to evaluate some of the inte
grations required in closed form, but in general nonlinear analysis 
numerical integration must be employed. Since our final objective 
is to use the element in nonlinear analysis, we choose to employ in all 
analyses numerical integration. 

Much emphasis has been given in recent years to reduced numerical 
integration in the use of low-order beam and plate elements [17,21]. 
The use of reduced integration is necessary in those cases, because 
if the stiffness matrices of very thin low-order elements are evaluated 
accurately, the elements display much too stiff a behavior. Using re
duced integration in the evaluation of the low-order element stiffness 
matrices can drastically improve some analysis results, but may also 
introduce spurious zero or very small eigenvalues that result in solu
tion difficulties, and make it difficult to assess the reliability of the 
solution results in general (and particularly nonlinear) analysis. On 
the other hand, using the higher-order element presented in this paper 
reduced numerical integration is not needed for an accurate response 
prediction, and a reliable and effective solution is obtained using 
high-order integration (see also Section 4.1) [18,20]. 

Considering the assumed displacement distributions for the elbow 
element, the Newton-Cotes formulas can be employed for the nu
merical integration with the following integration orders: 3-point 
integration through the wall thickness, 5-point integration along the 
elbow, and, using the composite trapezoidal rule around the circum
ference, 12-point integration for in-plane loading, and 24-point in
tegration for out-of-plane loading [9]. This integration order around 
the circumference assumes that all 3 ovalization patterns are included 
in the analysis; less integration stations can be employed if a smaller 
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Fig. 7 Longitudinal stress at midsurface of bend in Fig. 6 (no end con
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Fig. 6 Pipe bend and finite-element model used 
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Fig. 8 Longitudinal stress at inside surface of bend in Fig. 6 (no end con
straints) 

number of ovalization degrees of freedom are used. Also, instead of 
the Newton-Cotes formulas, Gauss numerical integration could be 
employed. The choice of the integration scheme is particularly crucial 
in nonlinear analysis and we will be presenting more details on the 
numerical integration in future communications. 

4 Sample Analyses 
The elbow element has been implemented in the computer program 

ADINAP. The following analysis results are presented to indicate the 
applicability and effectiveness of the element. In all analyses the 
Newton-Cotes integration described in Section 3.3 was employed, and 
the pipe geometric factor used was A = R&/(aWl — v2) [12]. 

4.1 Analysis of a Straight Pipe. The straight cantilever pipe 
in Fig. 5 was analyzed to demonstrate the effectiveness of the element 
in the analysis of thin structural members. The element formulation 
includes shear deformations at a pipe cross section and it is instructive 
to evaluate this assumption in the solution of this problem. In the 
analysis one element was used to model the complete pipe. 

Fig. 5 compares the analysis results obtained with the elementary 
beam theory solution for different length to diameter ratios. As ex
pected, the displacements and stresses predicted using ADINAP are 
very close to those of elementary beam theory neglecting shear de
formations for large length-to-diameter ratios, because in those cases 
the shear deformations contribute negligibly to the tip displacement 
of the pipe. Hence, it can be concluded that the element is effective 

when shear deformation effects can be neglected, which is the case 
in thin-walled pipes. 

4.2 Analysis of a Pipe Bend. The pipe structure shown in Fig. 
6 was analyzed using ADINAP because the analysis results could be 
compared with the results presented by Sobel [12]. Using ADINAP 
the pipe bend was modeled using three equal elbow elements as shown 
in Fig. 6. 

In his work Sobel used the state-of-the-art tools provided in the 
MARC computer program to analyze the bend. Based on an extensive 
convergence study, Sobel concluded that 32 or 64 of the MARC 
pipe-bend segment elements need be used to model the bend. 

In the first analysis using ADINAP the ovalization degrees of 
freedom at nodes 1 and 10 (and 2 to 9, see Fig. 6) were left free to 
simulate the conditions that were assumed in the analysis by Sobel. 
Figs. 7 to 9 show some stress components calculated using ADINAP 
and the corresponding results obtained by Sobel using the MARC 
program and the Clark and Reissner shell theory. The ADINAP 
analysis was performed using the 1, 2, and 3 in-plane bending ovali
zation terms of equation (15). Good correspondence between the 
ADINAP, MARC, and Clark and Reissner shell theory results is ob
served. It is also noted that in the ADINAP analysis all three terms 
of ovalization had to be included for an accurate response prediction, 
which corresponds to the recommendation given in Table 1. In the 
subsequent analysis of this bend we therefore included all the terms 
of ovalization. 

In the second analysis using ADINAP the ovalization degrees of 
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freedom were set equal to zero at the two ends of the pipe. Pig. 10 
shows the variation of ovalization along the pipe bend predicted in 
this analysis, using 3,6, and 24 equal elements to model the bend. As 
expected the finite-element results converge (neglecting the initial 
overshoot/undershoot) to the analytical solution that is based on the 

von Karman theory. It should be noted that this theory does not ac
count for elbow end-effects and using this theory there is a stress 
singularity at 6 = 0° and 90°; therefore, the present elbow element 
cannot be used to predict the stresses accurately at the elbow ends. 

In the third analysis, the pipe structure was subjected to a con
centrated transverse load instead of the concentrated moment. Fig. 
11 shows the predicted ovalization again using 3,6 and 24 equal ele
ments to model the bend. It is seen that the finite-element results 
converge (again neglecting the initial overshoot/undershoot) to the 
ovalization predicted by the von Karman theory. 

4.3 In-Plane and Out-of-Plane Bending Analysis of a Second 
Pipe Bend. The second pipe bend shown in Figs. 12-15 was analyzed 
for in-plane and out-of-plane bending using the same finite-element 
mesh as was employed in the previous analysis (see Fig. 6(6)). Some 
longitudinal and hoop stress results calculated with ADINAP are 
shown for the in-plane bending in Figs. 12 and 13, and for the out-
of-plane bending in Figs. 14 and 15. The computed results are com
pared in the figures with experimentally obtained values [22] and good 
correspondence is noted. 

5 Conclusions 
The formulation of a simple and versatile pipe elbow element has 

been presented. The element has been implemented and the solution 
results of various sample analyses have been presented. Since the 
element has been formulated using basically beam theory plus an 
allowance for ovalization of the elbow cross section, the element 
cannot capture the full three-dimensional shell behavior of elbows, 
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if ac t iva ted . However , t h e e l e m e n t p red ic t s t h e signif icant d i sp lace

men t s and stresses accurately for a large range of pipe geometries, and 

for t h e same accuracy, t h e use of t h e e l e m e n t leads t o very m u c h less 

expensive solut ions t h a n o the r previously pub l i shed c o m p u t a t i o n a l 

tools . 

T h e a p p r o a c h employed in t h e formula t ion of t h e elbow e l emen t 

shows m u c h p romise for t h e d e v e l o p m e n t of a s imple and effective 

e l e m e n t t h a t can also mode l accura te ly elbow end-effects , i n t e rna l 

pressure effects and , in par t icular , nonl inear mater ia l and geometr ic 

behavior . 
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On the Transverse Twisting of 
Shallow Spherical Ring Caps1 

The problem of transverse twisting of a shallow spherical shell with a small circular hole 
is solved, in generalization of the corresponding problem of a flat plate. The solution is 
of interest as a closed-form solution of an unsymmetrical stress concentration problem, 
with quantitative features depending on its boundary-layer behavior for large values of 
a relevant parameter. The problem is also of interest as an example of applicability of a 
previously proposed asymptotic procedure where interior contributions and edge-zone 
contributions are determined in sequence rather than simultaneously. 

Introduction 
The original aim of this paper was to formulate a nonrotationally 

symmetric stress-concentration problem for thin shells which could 
be solved in closed form, and to obtain the solution of this problem. 
It appeared in the course of the analysis that this stress-concentration 
problem was also a particularly fitting example for the application 
of an asymptotic solution method for unsymmetric shell problems, 
involving the concepts of interior and edge zone solution contributions 
and of the concept of contracted boundary conditions for the separate 
determination of these contributions, which had been proposed 
sometime earlier [4]. 

The problem is as follows. We consider an isotropic shallow 
spherical shell with the edges defined by two pairs of mutually per
pendicular planes perpendicular to a base plane, with the corners of 
the rectangle in the base plane which is determined by the two pairs 
of mutually perpendicular planes coinciding with the corners of the 
shell boundary curve. Given this configuration, we assume that the 
edges of the shell are free of stress, except for the action of equal and 
opposite concentrated corner forces, as indicated in Fig. 1. Our object 
is the state of stress in the shell, without or with a small concentric 
circular hole at the apex. 

It is evident that a limiting case of the foregoing problem is the 
corresponding problem of a flat plate, with the solution of the problem 
without the circular hole being a special case of the problem of Saint 
Venant torsion of narrow rectangular cross section beams, and with 
the solution of the circular-hole problem being included in solutions 
by Goodier for a class of transverse plate flexure problems [2]. 

1 Supported by the Office of Naval Research and dedicated to Professor A. 
L. Goldenveizer. 

Contributed by the Applied Mechanics Division for publication in the 
JOURNAL OF APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N. Y. 
10017, and will be accepted until June 1,1980. Readers who need more time to 
prepare a discussion should request an extension from the Editorial Depart
ment. Manuscript received by ASME Applied Mechanics Division, May, 
1979. 

In the present analysis the plate flexure problem appears upon 
assuming the value of a certain parameter ji to be zero. At the same 
time the asymptotic analysis corresponding to the procedure de
scribed in [4] is appropriate for values of ix which are large compared 
to unity. In the interim region of finite values of n it is necessary to 
obtain appropriate solutions of the equations of shell theory, which 
in this instance may be taken from shallow-shell theory. 

Regarding the physical aspects of the problem we find, as expected, 
a dominance of bending stresses over membrane stresses in the in
terior of the shell region. On the other hand, we also find that for 
sufficiently large values of fi we have membrane stresses in an edge 
zone which are of the same order of magnitude as the bending stresses 
in this zone, in such a way that the value of the stress-concentration 
factor for this problem of transverse bending involves both bending 
and membrane stresses in a significant manner. 
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E q u a t i o n s for I so tropic H o m o g e n e o u s S h a l l o w 
S p h e r i c a l S h e l l s 

We consider a shallow spherical shell with middle surface equation 
z -H — r2/2R, where R is the radius of the shell, H the distance of the 
apex from the base plane of the shell, and r and 8 are polar coordinates 
in the base plane. We assume that the shell is free of distributed 
surface forces and have then that tangentional stress resultants N, 
stress couples M, and transverse stress resultants Q are expressed as 
follows in terms of a stress function K and a transverse displacement 
function w, [3], 

N0I 

Mrr = ~D V2w - (1 - v) 

\>2K - N, 

'J),r w,eo] 

r r2 

N r e = - ^ + ^ , (1) 

-(l + v)DV2w-Mrr, (2) 

Mre=-(l-v)D 
Wfir 

Qr=-D(V2w\r, Q6=-D 
(V2«/), 

(3) 

Use of appropriate equations of equilibrium and compatibility in 
conjunction with the foregoing and in conjunction with stress-strain 
relations of the form err = B{Nrr — vNoe), etc., leads to differential 
equations for K and w of the form 

where 

RBV2V2K - V2w = 0, RDV2V2w + V2K = 0, 

V 2 = ( )rr + r-H ) r + r-2( ),« 

(4) 

It is readily verified that the solution of the system (4) may be ex
pressed in terms of three functions 4>, \p, and x i n the form [4], 

> + x, K = \p - RDV2x, 

provided that 

V20 = 0, VV = 0, V2V2x + X4x = 0, 

(5) 

(6) 

where X4 = 1/R2BD. 
We note for what follows as expressions for resultants and couples 

in terms of 4>, 4>, and x 

Nrr = —i>,rr ~ RD + , 

Nee = V v + RD + — + X4x 

(V2x).< 
r r2 

(V2x),r6 

Mr, 

Mei 

- ( ! • 

Qr = -D(V2
X),n 

• y ) D < / , , r r - D V 2
X + ( l - v)D | — + — | 

(1 - v)D<j>,rr - vDV2
X - (1 - v)D ( ^ + Zf), 

M r e = ( l - W f l P f - — 
\r* r 

+ (1 -v)D\—~ 1 
r'- r 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

and we also note the designations of <p and \p as inextensional bending 
and membrane (interior) solution contributions, respectively, and 
the designation of x as edge zone solution contribution, with the 
physical significance of the latter designation depending on an ap
propriate relation between the length-parameter 1/X and an appro
priate linear dimension of the shell. 

T h e B o u n d a r y - V a l u e P r o b l e m 
We start out with the observation that the classical solution w = 

—Pxy/2(1 — v)D for Saint Venant twisting of a flat rectangular plate 
as produced by an arrangement of concentrated corner forces P, in 

conjunction with an assumption of no in-plane stress, that is, in 
conjunction with the stipulation K = 0, also satisfies the differential 
equations (4) for shallow spherical shells. Furthermore, this solution 
of (4) satisfies the same corner force conditions for a spherical cap with 
otherwise free edges, in the event that the projection of these edges 
onto the base plane of the shell happens to be rectangular. 

Having the aforementioned simple solution for transverse twisting 
of a spherical cap, we ask for the way in which this solution is modified 
by the presence of a circular hole of radius a, concentric with the apex 
of the shell, given that a is small compared to the overall dimensions 
of the cap. Evidently, the boundary conditions for the edge of this hole 
are of the form 

r = a; Nrr = Nrt •Mr, •• Qr + r-mre,e = 0. (14) 

As regards the boundary conditions along the outer edges of the cap, 
we make the stipulation that for large r we will have a homogeneous 
state of stress with Cartesian couple and resultant components Mxy 

= -P/2, Mxx = Myy = Q,Qx = Qy = Nxx = Nyy = Nxy = 0. This is 
transformed, in an elementary manner, into four conditions of the 
torm 

Mrr = -P sin 28, Qr + r-xMr6,e = iYrr = Nro = 0. (15) 

C l o s e d - F o r m S o l u t i o n 
The form of the boundary conditions (14) and (15), in conjunction 

with the form of the differential equations (4) indicates that suitable 
expressions for w and K will be product solutions /(r) sin 26. Con
sidering that w and K must be as in (5) and (6), and deleting at the 
outset terms not compatible with the prescribed boundary conditions 
at infinity, we have then that w and K will be of the form 

Pa2 sin 28 11 r2 

2(1-v)D \2a2 + Ci — + C3ker2 Xr + C4 kei2 \r , (16) 

K-
y2Pa2sm28( a 

ci — — C3 kei2 Xr + C4 ker2 \r\, (17) 
(1 - uWDB \ 

with four arbitrary constants cn, and with the Kelvin functions ker2 
and kei2 subject to the two ordinary second-order differential equa
tions 

ker2 x + x _ 1 ker'2 x — 4x~2 ker2 x = — kei2 x, (18a) 

keislx + x~l kei2* — 4:c~2 kei2* = kei2X. (186) 

In deriving expressions for stress resultants and couples from (16) 
and (17), it will be convenient to introduce the abbreviations 

ker2 = kr, kei2 = &;; \r = x, Xa = fi. (19) 

Therewith, and with (18o,6), we obtain from equations (1) and (3) 

Nrr = 
V 2 Ps in : 

(1 - V)VDS 

Nre = 
y2P cos 28 

(1 - v)VDB 

-6C2 — -/J.2 

r 4 

-6c2—- — M2 

C3 
ki 4k, 

- c 4 

k'r 4kr\ 

o \k'i k> 
2c3 ; 

- 2c4 

\x x'-) 

Mr, 
P sin 28 

2(1 - v) 
-^2[c3fe; - Cikr] ~ (1 ~ V) - 1 - 6cX — 

+ n2 
C3 

k'r 4kr\ 
v 2 + c ^ - ^ l 

? r + " 
M, r0,B _ 

r 

P sin 2d 

P sin 28 

2(1 - v)a 

I a4 

\li3[c3k'i - c4kr]. 

+ 2n2 

X Xi) \X X^l 

(20) 

(21) 

(22) 

(23) 
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Introduction of (20) to (23) into the boundary conditions (14) then 
leads to the following set of four simultaneous equations for the de
termination of the four constants of integration c„, 

czdxk'i — 4ft,) - Ci()xk'r - Ahr) = ~6c2 , (24) 

c3(fik'i - ki) - Ci(ixk'r - kr) = - 3c 2 , (25) 

fi2k 

use of certain identities involving Kelvin functions of various orders. 
In this way we obtain,3 upon introducing (32a,6) into (30a,6), as ex
pressions for the significant edge moment and the significant edge 
resultant, in terms of zeroth-order Kelvin functions, 

Af80(a,Tr/4) l + i/ 

I fi2ki 
C3 |- + fxkr- 4kr 

C3 

\l-V 
• c 4 fik't + 4fc; = 6c! + 1, (26) w h e r e 

+ 4jufc'r — 4kr\ — C4 
1 - V 

- 4iiki + 4ki\ = 12ci -2 , 

(27) 

where now ki = ki(ix), etc. 
Upon suitable transformations, this system of equations can be 

written in a somewhat simpler form. To begin with, equations (24) 
and (25) are readily shown to be equivalent to the set2 

h 

and 

- P / 2 1 + (1 - v)f1' 

(ker' JX)2 + (kei' /x)2 

(33a) 

2/x kei' /x ker /x — ker' /x kei fi — 2\x x[(ker' /A)2 + (kei' /x)2] 

(33b) 

Neg(a,ir/4) 1 f2 

where 

- c 2 + cakt — Cikr = 0, 

2c2 + Cs/xki — CijxkT = 0. 

(24') 

(25') 

P/2 ^/DB 1 + (1 - v)f1 

kei' ix kei /x + ker' JX ker fi 

(34a) 

Having (24') and (25'), we may use (26) and (27) so as to obtain in 
place of these two equations the set 

-2ci c2 + C3ixk'r + Ciixhi — —1, 

c\-
2 1 -

-c 2 + cskr + cjii •• 

(260 

(270 

Before evaluating the system (24') to (27'), it is useful to establish 
the analytical form of the quantities which are of principal physical 
interest. These quantities are the edge values of the couple Meg and 
of the resultant Nee- We obtain a particularly convenient form of these 
expressions by making use of equations (1) and (2), in conjunction 
with two of the boundary conditions in (14), so as to have 

h = 
kei' LL ker /it — ker' ix kei fi — 2/x 1[(ker' fx)2 + (kei' /x)2] 

(34b) 

Stress-Concentration Factors for Bending Stresses and 
Membrane Stresses. We define a bending stress-concentration 
factor kb as the ratio Mej(a,7r/4)/iWo where Mo = Mso(°>, 7r/4) = 
—P/2. Therewith kt> is directly given by the right-hand side in 
(33a). 

In order to obtain the corresponding membrane stress-concentra
tion factor km, it is necessary to be more specific about the nature of 
the two-dimensionally isotropic shell medium. We shall assume in 
what follows that the shell is homogeneous in thickness direction and 
have then the relation 

DB-
Eh3 

1 

12(1 - v2) Eh 

a,8) = - ( 1 + v)DV2w(a,6), Neo(a,6) = V2K(a,6). (28) We write further 

An introduction of (16) and (17) into (28) gives, with the help of 
(18a,o), 

Met(a,6) 

Nel(a, 8) •• 

Pl+v 

2 1 - i / 

P jx2 

2 (1 - v)yfDB 

ix2(c3ki - cAkr) sin 20, (29a) 

(c3kr + akt) sin 28. (296) 

Noo(a,TrlA) 
Om = ! , 

h 

and therewith obtain from (34a) 

< r 0
; 

1 2 ( 1 -

6M0 

h2 

V2)' 

3P 

h2' 

<ro V 3 1 
h 

+ (1 - v)h 

(35a) 

(35b) 

(35c) 

Having (29a,fe) we see, with the help of (24') and (27'), the possibility 
of the further relations 

M0l a," 
Pl + v 

2 1 -

N,, I 7r\~P ^ 
V" 4/ ~ 2 (1 - v)y/DB \2 

1 1 ix2 

+ C\ C2 
2 1 - 1 / 

(30a) 

(306) 

Stress-Concentration Factors for Small and for Large Values 
of fi. Given that ii = \a = a/$R2BD = -#12(1 - v2)a/^/R~h, the. 
limiting case of a flat plate corresponds to the assumption ix = 0. We 
find, from equations (336) and (346), that / i (0) = - \ and/2(0) = 0 
and therewith from (33a) and (35c), 

(kb)y.=0 -
4 + 4;/ 

3 + v ' 
(km)n= •0, (36a,6) 

and it remains only to determine the coefficients c\ and c2 from 
equations (24') to (27'). We do this by first expressing cs and C4 in 
terms of c2, from (24') and (25'), in the form 

c2 fik'r + 2kr c2 ixki + 2ki 
C3 = - - c4 = 

ix k\kr — k'rki' "* ix h{kr — krki 

and by then using (260 and (27') in order to obtain the relations 

(31) 

with this result coinciding, as it should, with Goodier's result for 
plates, without consideration of transverse shear deformation [2]. 

For the case of large \x, corresponding to a shell problem with dis
tinct interior and edge zone solution contributions use may be made 
of appropriate asymptotic formulas. We find, by making use of certain 
known cross-product expansion formulas4 that 

c2 = 

1 
- + ci -
2 

1 + (1 - v) 
(ixk'r+ 2kr)

2+ (ixk'i+2ki)-
h 

2n3(k,
ikr - M i ) 

_ V2 f x_ b/L 
2ix ' 2n 

c2 ix2 kr(ixkr + 2kr) + kidikf + 2ki) 

(32a) 

c% (326) 

and therewith, 

2 1 — v n(kikr — krki) 

It is possible to simplify the form of (32a,6) somewhat by making 

(1 + ") 1 + 
MV2/ ' V 1 2 + v\ 

(37a,6) 

(38a,6) 

2 Corresponding to the fact that the conditions Wrr = Nrt 
be shown to be equivalent to conditions K = K , = 0. 

•• 0 for r = a can 3 See equations (9.9.14) to (9.9.17) in [1]. 
4 Equations (9.10.32) to (9.10.34) in [1]. 
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Table 1 

M 

0 
0.1 
0.3 
0.5 
0.8 
1 
2 
3 
4 
5 

CO 

h 
-0.250 
-0.249 
-0.243 
-0.234 
-0.219 
-0.208 
-0.165 
-0.135 
-0.114 
-0.098 

0 

h 
0 
0.012 
0.063 
0.122 
0.206 
0.257 
0.443 
0.557 
0.633 
0.687 

1.000 

v = 0 

1.333 
1.332 
1.321 
1.305 
1.280 
1.263 
1.198 
1.56 
1.128 
1.109 

1.000 

kb 
v= 1/3 

1.600 
1.599 
1.591 
1.580 
1.561 
1.548 
1.498 
1.465 
1.443 
1.427 

1.333 

v = 1/2 

1.714 
1.713 
1.707 
1.699 
1.684 
1.674 
1.635 
1.609 
1.591 
1.578 

1.500 

i/ = 0 

0 
0.009 
0.048 
0.092 
0.152 
0.187 
0.306 
0.372 
0.413 
0.440 

0.577 

Km 

K = 1/3 

0 
0.008 
0.041 
0.078 
0.131 
0.162 
0.271 
0.333 
0.373 
0.400 

0.544 

v = 1/2 

0 
0.007 
0.036 
0.069 
0.116 
0.143 
0.241 
0.299 
0.336 
0.362 

0.500 

Inasmuch as bending and membrane stresses superimpose the 
relevant stress-concentration factor for the most highly stressed face 
of the shell comes out to be* for sufficiently large values of p, 

y T ^ [1 + v 
k = kb + km*>l + V + 

/ M\/2 \ V 3 
— y/T-

(39) 

It may be noted that the numerical values of k for n = 0 and for ji 
= <*> are not greatly different, but that while for n = 0 the stress con
centration is due entirely to bending, a significant fraction of it is, for 
1 « /x, due to membrane rather than due to bending action. Nu
merical values for f\, f% kb, and km, as a function of fi and v, may be 
found in Table 1. 

Interior Solution Stresses for Large fi. The form of the ex
pressions (16) and (17) for w and K indicates that for large values of 
fi the effect of the terms with cs and C4 is significant in a narrow edge 
zone only and that outside this zone the remaining expression for w 
is as if bending occurred without stretching and the remaining ex
pression for K is as if the state of stress of the shell was a pure mem
brane state. 

We obtain information on the state of stress outside the narrow edge 
zone, and in particular on the relative significance of bending and 
membrane stresses, by determining the values of M$e and Nee in ac
cordance with (16) and (17) and the defining relations (1) and (2), by 
setting c3 = c4 = 0 in (16) and (17) and by then deriving the rela
tions 

m a, -

- - ( l + 6Cl), 

P 6c2 

2 (1 - v)VDB' 

(40a) 

(40b) 

We evaluate (40a) by taking ci from equation (26), with C3 and C4 
as in (31) and (32a). Therewith we obtain, except for terms small of 
higher order 

M0 

Gb_ 

CO 

(>) 
'C2 

1-v 
1. 

A corresponding evaluation of (406) leads to the relations 

6 M 0 ' 
: M - C 2 \ / 1 2 

00 V 

1 + v V l 2 ( l - v2) 

(41a) 

(416) 
Co V 1 — v V 

A comparison of (41a,6) with (38a,6) shows that the order of mag
nitude of the bending stress in the interior is the same as the order 
of magnitude of this stress in the edge zone, in such a way that the 
dimensionless edge zone value 1 + v decreases to a value 1 in the in
terior. At the same time the interior membrane stress comes out to 
be small of relative order X/fi2 so that, effectively, the interior state 
of the shell is a state of inextensional bending. 

Direct Asymptotic Solution for Interior and Edge Zone 
States 

We proceed as in [4] to solve the given boundary-value problem, 
for values of n which are sufficiently large compared to unity, through 
use of equations (5)-(13). Introduction of (7) and (13) into the two 
sets of boundary conditions (14) and (15) then leaves as conditions 
for the determination of the two harmonic functions 4> and $ and of 
the "plate on an elastic foundation" function x, for r = a, 

l/Vr + RD + — 
\ r r* 

0, 

±r±_*A_RD 
r r* \ 

((V2X).n (V2x), 

(1 • ^ , r r + v 2 x - a - " ) — + - • ' " ' 

(42) 

(43) 

(44) 

iZl(**_*A +lZZ(lki_M) + (v*) , -0 , . (45) 
r \ r r^l.o r \ r r l,e 

with equations (42), (43), and (45) also holding for r = =>, and with the 
right-hand side of (44) being replaced by —(P/2D) sin 20 for r = °°. 

We now note that when 1 « /x we have the order-of-magnitude 
relations, 

X = 0(aX,r), X,r = o(aX,rr), (46) 

etc. We use these for an asymptotic solution of the problem, by re
taining in (44) and (45) the highest and second highest order-of-
magnitude terms in x> (V2x),r and V2x, only, that is, we replace 
equations (44) and (45) by the abbreviated equations 

( l - J / ) 0 , r r + V 2
X = O, 

+ (V2x),r = 0. 1-" t±r _ ±\ 
r \ r r2),i 

(47) 

(48) 

An introduction of this into (42) and (43) then leaves as two conditions 
for the determination of the two harmonic functions <f> and \p,& 

trr-RD-— 
rl 

t-ti + RDL 

0, 

'<l>,r 

1 r 

<t> 
<t>,r 0. 

(49) 

(50) 

Having determined ij> and \p, we subsequently determine the as
sociated approximation for the edge zone function x with the help of 

5 Note that upon writing equations (7)-(13) in the form Nrr = N'n + Ne
rr, etc., 

so as to distinguish between interior and edge zone solution contributions, 
equations (49) and (50) are equivalent to the previously derived contracted 
boundary conditions for the determination of the interior state [4], of the form 
r W „ - RWU + M'rr,ih = r2M» ~ fi W , , , - M'„),, = 0. 
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equations (48),6 and we use the results obtained in this way in order 
to obtain from equations (8) and (12) as approximate expressions for 
the relevant edge values of circumferential stress resultant and stress 
couple 

N0e = \p,rr + RDXAx, Mes=-(l-")Dd>,rr-vDV2x, (51) 

for r = a. 
In order to carry out the remaining simple calculations we write, 

consistent with (16) and (17), in order to assure satisfaction of all 
conditions at infinity 

Pa2 sin 26 [\r2 a2\ 
(/> = Wl = — 

2(1-«-)£> \2a2 

Pa2 sin 20 

— r + c , — 

\L = Kl = - = 1 0 2 " , 

(52) 

(53) 

and we further write 

x = e-Mr-cO/V2|Cgcos A ^ — ? + C 4 s i n X ^ — ^ sin 20, (54) 

and 

V2
X = X2e-Mr-a)/V2 IC3 sin X ^ ^ - C4 cos X r—^\ sin 20. 

V2 V~2 
(55) 

We now introduce (52) and (53) into the boundary conditions (49) 

6 We note that these equations may be written, equivalently, as DV2x = M\, 
and D(V2x),r = f-'Af j , , , « 0, for r = a. 

and (50) and obtain as two equations for the determination of ei and 
C2 

C2M2 - (1 - " ) d + 6ci) = 0, c2ii
2 - (1 - i/)(l - 6ci) = 0. (56) 

Equations (56) imply, consistent with (32), that 

c2M 1 ci = 0. (57) 

Having C2 and ci as in (57), we obtain Cz and C4 from (47) and (48) 
in the form 

C3 = -P/2DX2, C4 = 

and therewith, from (51), 

N0l •—-==, Mi)o\a,— 
2VM I 4 

-Cs-P^/2/DX3a 

••-(1 + v)-

(58) 

(59) 

The above expressions for the edge values of Ngg and Mm niay 
be compared with the interior values of these same two quan
tities, N'goia, -x/A) = &P/2sfDBn2 and Mao(a, ir/4) = - P / 2 , which 
follow from (52), (53), and (57), consistent with the contents of 
equation (41). 
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Minimum-Weight Design of Thin-
Walled Cylinders Subject to Flexural 
and Torsional Stiffness Constraints 
We consider the problem of determining the cross-sectional shape of a thin-walled cylin
der of constant (unknown) wall thickness and given contour length that uses the least 
possible material to achieve prescribed minimum stiffness in torsion and bending. The 
corresponding variational problem is shown to belong to a class with nonadditive func-
tionals whose Euler equation is an integrodifferential equation. Cross-sectional shapes 
are presented for various stiffness ratios and compared with circular and elliptical cylin
ders. 

Introduction 
Optimal design problems of mechanical elements usually consist 

of maximizing or minimizing some mechanical property for given 
length and volume of the element. Among the mechanical properties 
are the buckling load [1, 2], frequency of natural vibrations [3], and 
transverse deflection [4]. The majority of the problems attempted so 
far involved mechanical elements which were required to perform a 
single static or dynamic function and these reduced to the solution 
of an isoperimetric variational problem with a single constraint. 

Sometimes, however, the actual working conditions of the designed 
element are not very clearly defined. In such situations it is advan
tageous to design versatile mechanical elements that fulfill various 
requirements at different times during their design life (multipurpose 
elements). Thus, for example, Banichuk and Karihaloo [5] obtained 
the minimum-weight design of a solid cylindrical bar that was to act 
as a shaft or as a beam at different times during its design life and had 
to have certain minimum torsional and bending stiffness. The shape 
of a hollow cylindrical bar under the same conditions was found in [6]. 
These problems differed from those attempted in [1-4] in that, besides 
an increase in the number of design parameters, they were no longer 
one-dimensional but were described by partial differential equations, 
the partial derivatives 'appearing both in the governing differential 
equation and the necessary optimality condition (Euler equation). 

In the present paper we consider the problem of determining the 
cross-sectional shape of a thin-walled cylinder of constant (but un
known) wall thickness and given contour length that uses the least 
amount of material to achieve prescribed minimum stiffness in 
bending and torsion. This problem might at first appear to be far 
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simpler than that attempted in [6] in the sense that the torsional 
stiffness of a thin-walled cylinder is defined by a simple algebraic 
expression and not through a stress function as in the torsion theory 
of elastic bars [7]. However, as will become clear later, this concep
tually simple optimization problem leads to a variational problem 
belonging to a class with nonadditive functionals whose necessary . 
optimality condition (Euler equation) is an integro-differential 
equation. 

Formulation of Mathematical Problem and 
Delineation of Special Cases 

In order to formulate the optimization problem mathematically 
it is important to bear in mind that the thin-walled cylinder is required 
to act as a shaft or as a beam at different times during its design life, 
but is not expected to withstand twisting and bending moments si
multaneously. 

Let us consider a thin-walled cylinder the perimeter of whose cross 
section (center line) is given and equal to L. The wall thickness, t, is 
constant and is to be determined as a result of minimising the material 
volume, V. Referring to Pig. 1 and assuming the cross section to be 
doubly symmetric (this assumption is later confirmed by the 
transversatility conditions), the optimization problem consists of 
minimizing the material volume 

V-- f 
Jo 

t VI + yx
2 dx = tL —- miny (1) 

where yx denotes dy/dx, and XQ is a parameter to be determined. 
We are looking for the shape of the center line of the cross section 

y(x) whose torsional stiffness, J, is at least equal to a prescribed value, 
Jr> For a thin-walled cross section the torsional stiffness is indepen
dent of the stress function [7], and therefore, the design requirement 
in torsion is easily expressed through 

J = 4AH/L > Jo, (2) 

where A is the area enclosed by the center line of the contour of un-
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known shape defined by 

o 
ydx. (3) 

Next, consider the action of the thin-walled cylinder as a beam. The 
primary mechanical property of a beam is its bending stiffness, I. 
Assuming the bending to take place in the plane yz (z-axis is directed 
along the length of the beam), the design requirement that I be at least 
equal to a prescribed value, Jo, is expressed through 

J-»*o , 
y2Vl+yx2dx>I0. 

o 
(4) 

Finally, the requirement of given contour length, L, may be ex
pressed as 

Vl+yx*dx. 
o 

The design constraints (2) and (4) can be rewritten as 

1 
t 5= 

where 

and 

Pi(y) • 

Fi2(y)' 

/JoL 

(5) 

(6) 

(7) 

y> 

HA 

Z2-ZZ>>. 
-<5>v V 

• t f s ^ 

*o 

\ W \s 

^\» 

X 

Fig. 1 A quadrant of a Ihln-walled cross section showing the natural coor
dinate system (s, 6) 

In other words, if the prescribed design constraints on the thin-
walled cylinder satisfy the inequality (13), the minimum-weight 
thin-walled cross section will be circular in shape with wall thick-

t :*-
F2(y) 

where 

F2(y) h Jo 
y2Vl + yx

2dx. 

(8) 

(9) 

The optimization problem (l)-(5) therefore reduces to the search 
of 

mrnv max \FiHy) F2(y)\' 

or, in view of the fact that Fi(y) and F2{y) are positive, 

maxy min{Fi2(y), F2(y)\, (10) 

subject to the isoperimetric condition (5), i.e., 

»*0 
F»(y) = L 

o 
v ' l + yx

2dx. (11) 

Let us analyze the possible solutions to (10). To this end, let us 
consider the following three cases: 

Case 1. maxy rain\Fi2(y), F2{y )J is realized on the first functional. 
In other words, the optimal solution is such that Fi2(y) < F2(y). In 
this case the optimization problem reduces to 

or, which is the same as 

Fi2(y) ~- maxy 

Fi(y) — maxy (12) 

subject to the isoperimetric condition (11). The solution of this iso
perimetric problem concerning the maximization of the torsional 
stiffness is a hollow circular cross section [8] of radius R = L/27T 

x2 + y2= (J,/2TT)2, 

whose torsional and bending stiffness in terms of prescribed param
eters, L, To, and Jo are 

Fi2 = L3/4J0ir2, F2 = L3/870ir2. 

From the condition of the validity of the present solution, viz., Fi2 

< F2, we get 

hi Jo < y2. (13) 

t = 4J0ir2/L3 . (14) 

The inequality (13) also follows directly from the fact that for a 
circular cross section J = 21. 

Case 2. Let us consider next the case when maxy min{Fi2(y), 
F2(y)\ is realized on the second functional, i.e., F2(y) < Fi2(y). In this 
case the optimization problem reduces to 

F2(y) — maxy, (15) 

subject to the isoperimetric condition (11). The solution of such a 
problem would result in an indefinite narrowing of the cross section 
in the * -direction. In other words, A2 —• 0 which is the same as, J ->• 
0. Consequently, Fi2(y) can become lesser than any positive number, 
violating the design constraint (2) for all Jo ^ 0. This is easily ex
plained by considering, for example, a thin-walled rectangular cross 
section of depth, h, wall thickness t, and perimeter L. The area en
closed by such a contour A = (L - 2h)h/2. The bending stiffness of 
the thin-walled section is / s* th2(3L — 4h)/l2, hence it follows that 
the bending stiffness is maximized when h -*• L/2, with the result that 
A -»• 0. Hence the possibility that there exists an additional lower 
bound to Io/Jot similar to (13), is clearly excluded for Jo ^ 0. 

Case 3. Finally, let us consider the possibility that maxy 
minji<'i2(y), F2(y)} is simultaneously realized on both functionals. In 
other words, the optimal design is such that Fi2(y) = F2(y). In this 
case the optimization problem reduces to 

Fi2(y) -» maxy or F2(y) —• maxy (16) 

subject to the isoperimetric condition (11) and the requirement that 
FiHy) = F2(y). 

In the plane of the prescribed design parameters Io and Jo, it is clear 
that Case 3 is possible only if the inequality (13) is violated, i.e., when 

Jo/Jo > y2-

Variational Problem and Optimality Condition 
The variational problem corresponding to the optimization problem 

(16) is obtained by including the constraints through Lagrange mul
tipliers, X and ix in the functional (16), thereby obtaining the following 
auxiliary functional: 

n = FT2 - X(Fi2 - F2) + ^Fs - L) 

= (1 - X)Fi2 +\F2 + MCF3 - L). (17) 
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It should be mentioned that the auxiliary functional could also be 
formulated as 

n = (1 - a)F2 + aFi2 + ii(Fa ~ L). (18) 

The latter problem would have the same solution, but the value of 
Lagrange multipliers would, naturally, be different. 

The particular choice of the sign of X and a is made in order to be 
in line with their standard range of validity (0, 1) for dual con
straints. 

Let us rewrite the nonadditive functional II (17) as 

n = tfw, F% F3), 

where, from (7), (9), and (11), it follows that 

(19) 

J ->x 

0 
h(x,y,yx)dx, £ = 1,2,3, 

The extremum of the variational problem (19) is sought among a 
class of continuous functions, y (x), with continuous first derivative. 
A discontinuous first derivative would require the optimal contour 
to have sharp corners which are notoriously inefficient in torsion. To 
derive the necessary stationarity condition, we follow the procedure 
adopted in [9] and write an expression for the first variation of the 
functional II, expand the function \/< in powers of SF& and retain only 
terms of the first order of magnitude. By equating 511 to zero and 
bearing in mind the arbitrariness of the function y (x), we obtain the 
following Euler equation: 

k=i dFk 

0 (20) 

where 

&Fk 
by dx dyx 

In deriving the Euler equation (20) account was taken of the natural 
boundary (transversality) condition's on the function y(x) which re
quire that it be normal to the respective axes at x = 0 and x = xo- This 
confirms the assumption made earlier concerning the doubly sym
metric nature of the unknown function y(x). 

In the problem under consideration 

-£-=2(1-
dF.i vJgL 

2>F2 ' 

ty 
d ^ " " ' 

s: ydx, 

(21) 

and 

8F-

8Fi = -

8y „ 

la 

8F3 = - 4 

IoWl+yx2, 
yx 

(22) 

Wl+yx*l: 
where, as before, subscript x denotes differentiation with respect to 
x. 

Substituting (21) and (22) into (20) and collecting similar terms, 
we get the following necessary optimality condition for the optimi
zation problem under consideration: 

In f* x 0 
32(1 - X ) — ydx + 2X-

JnL Jo 
y 

0, (23) 
y « ( X y 2 + v) 

JoLJo •'"' ' " " V l + y % 2 (l+yx
2)s/2 

where v = ft/0 i s a new Lagrange multiplier. 
For a given value of Io/Jo > V2, the optimality condition (23) has 

to be solved together with the constraint F i 2 = F 2 and the isoperi-
metric condition (11) to determine the unknowns X, v, xo, and the 

function y(x). Two additional conditions required to determine the 
four unknowns are the transversality conditions just mentioned. 

It should be mentioned that the derivatives d\p/dFk in the Euler 
equation are to be evaluated at the values of the integrals Fk that 
correspond to the extremum of the variational problem (19). In this 
sense the integral term in (23) is a constant at the extremum of 
y(x). 

Note also that the special Cases 1 and 2 delineated in the foregoing 
correspond to X = 0 and 1, respectively. An analysis of the resulting 
simplified optimality condition would confirm the previously men
tioned solutions of these special problems. 

S o l u t i o n M e t h o d 
In solving the optimality condition (23), together with the con

straint Fi2 = F2 and the isoperimetric condition (11) it was found 
convenient to use natural coordinates s, 8 measured from the hori
zontal axis (Fig. 1) and to normalize the given contour length. More
over, in view of the doubly symmetric nature of the cross-sectional 
shape it was only necessary to consider a quadrant, shown in Fig. 1. 
Note that in this quadrant 8 varies from ir/2 to it. 

In the natural coordinates the optimality condition (23) and the 
constraint F i 2 = F2 take the following form: 

2Xy cos 8 - C 

ds \y2 + v 

16 M r1/4 ^ 2 

— I I y cos 8 ds 
Jo\Jo 

J-1 /4 
y2ds, 

0 

where 

In r1/4 

C = - 3 2 ( l - A ) — y cos 8ds, 
Ja Jo 

dy 
sin#. 

(24) 

(25) 

(26) 

(27) 

Due consideration has been given to the range of 6 in the particular 
quadrant of interest in choosing the sign of the trignometric functions. 
Note that the result of normalizing the given contour length to unity 
is manifested in the upper limit of the integrals. 

The numerical procedure used consisted in 

1 Integrating (24) and (27), using a fourth-order Runge-Kutta 
scheme, from s = 0 to s = lk with assumed values of C, X, and v subject 
to the transversality condition 8(0) = ir/2. 

2 Updating the value of X using the Newton-Raphson (shooting) 
method and repeating steps (1) and (2) until the transversality con
dition d^k) = •K was satisfied. 

.3 Calculating a new value of C from (26) and repeating Steps 1-3 
until the difference in successive values of C was less than a specified 
value (2 X 10 - 6 was found suitable). 

4 Updating the value of v using the Newton-Raphson method and 
repeating Steps 1-4 until the constraint (25) was satisfied. 

In Steps 1 and 4 the necessary derivatives were found numerically 
requiring two evaluations of the preceding steps. 

The results obtained by this procedure are presented and discussed 
in the next section. 

R e s u l t s and D i s c u s s i o n 
The optimal cross-sectional shapes for various values of IQ/JO > V2 

are shown in Fig. 2. For IQ/JO < V2 the optimal (circular) shape is 
shown for comparison. It is clear that as In/Jo increases the cross-
section narrows in the x-direction. In the limit as Io/Jo -*• °°, we get 
the limiting Case 2 mentioned in the foregoing. 

The values of the various constants as a function of Io/Jo are 
graphed in Fig. 3, while Fig. 4 shows the thickness ratio t/Io of the 
optimal cylinder for various values of Jo/Jo

in order to judge the economy made possible by optimization let 
us compare the optimally designed thin-walled cylinder first with the 
commonly used circular cylinder and then with an elliptical cyl
inder. 
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0.02 0.04 0.06 

Fig. 2 Cross-sectional shapes for various stiffness ratios / 0 /J 0 ; broken curve 
represents an elliptic cross section with la/J0 = 2 

Fig. 3 Variation of constants X, v, and C with /0/Jo; X = 0 and 1 correspond 
to special Cases 1 and 3, respectively 

Fig. 4 Variation of thickness ratio f//0 with l<\IJa\ the limiting value l/l0 = 
78.957 corresponds to a circular cross section 

For a circular cylinder the I/J- value is fixed and equal to one half. 
Consequently, the value of t/Io is also fixed and is equal to 78.957 for 
unit circumference. Thus, in this case, the design is governed by the 
prescribed minimum bending stiffness Jo, the torsional stiffness of 
such a cross section being always greater than the prescribed mini
mum value Jo- The values of t/Io of the optimal thin-walled cylinder 
are compared in Table 1 with those of a thin-walled circular cylinder 
having the same value of the bending stiffness IQ. It is clear that a 
substantial material saving is achieved by optimization, especially 
for large values of To/Jo-

On the other hand, a comparison of the thickness ratios t/I0 (Table 
2) of the optimal thin-walled cylinder and an elliptical cylinder having 
the same value of IJJo (expressions for I and J of an elliptic cross 
section of given length are given in the Appendix) shows that the 
difference is practically insignificant, although the values of t/Io for 
the optimal cylinder are consistently smaller. Also, the optimal 
cross-sectional shape is very close to an ellipse except near x = 0 and 
y = 0. This is illustrated in Fig. 2 for the case of To/Jo = 2. However, 
it should be emphasized that the optimality condition (23) is not 
satisfied by an elliptic cross section. 
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APPENDIX 
For a thin-walled elliptic cross section x = a cos <f>, y = b sin </>(£> > 

a). The length of the contour L = AbE(k) and the area enclosed by the 
contour center line A = irab, hence the torsional stiffness 

J = Tr2a2bt/E(k). 

The bending stiffness / is given by 

(2k2 

where 

/ = 4 t f e 3 r " „XE(k)+ — K(k) 
3fe2 3k2 

k2 = l - (a/b)2, 

k'2=\-h2, 

and K and E are complete elliptic integrals of the first and second 
kind, respectively. 
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Remarks on the Static and Dynamic 
Imperfection-Sensitivity of 
Nonsymmetric Structures 
The simple static and. dynamic buckling model (the three-hinge rigid-rod system, con
strained laterally by a nonlinear spring) originally proposed by Budiansky and Hutchin
son, is modified so that the force of the spring includes both quadratic and cubic terms. 
Expressions are given for the buckling load of the imperfect structure as function of the 
imperfection. These formulas generalize the classical expressions for the static buckling 
load (due to Koiter), and for the dynamic buckling load (due to Budiansky and Hutchin
son) for symmetric or asymmetric structures, to nonsymmetric ones. 

Introduction 
The general theory of buckling and postbuckling behavior of elastic 

structures was worked out by Koiter [1,2]. Further contributions were 
provided by Budiansky and Hutchinson [3] and other investigators 
(for an extensive bibliography see, for example, the article by Budi
ansky [4]). Emphasis in analysis of static imperfection-sensitive 
structures was shifted to determination of the maximum load Xs at
tainable on the prebuckling portion of the load-generalized-dis
placement curve of an imperfect structure, and to the relationship 
between Xs and the initial imperfection. The initial postbuckling 
analysis employs the following asymptotic expansion of the load pa
rameter X in terms of the buckling deflection £, for small values of the 
latter 

X/Xc = 1 + a£ + 6£2 + . (1) 

where coefficients a, b,. . . determine the initial postbuckling behavior 
and Xc is the classical buckling load. Distinction is made between 
symmetric and asymmetric cases, according to "a" does or does not 
vanish. The symmetric structure is imperfection sensitive (in the sense 
that an imperfection results in reduced values of the maximum load 
the structure can support) if b < 0 whereas the asymmetric structure 
is imperfection-sensitive if a£ < 0 and reduction of the buckling load 
with respect to the classical one occurs for one sign or other of £, where 
£ is the (small) initial imperfection amplitude. For the structures 
represented by these cases, Koiter's general theory yields the following 
asymptotic results, respectively: 
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(1 - Xs/Xc)
3/2 - (3v /3/2)|£|v /=feXs/Xc = 0 (2) 

( l - X s / X c ) 2 + 4 a £ X s / X c = 0 (3) 

These formulas were derived in reference [3] also directly, for the 
simple model of a three-hinge, rigid-rod column, constrained by a 
nonlinear spring. A column with a cubic spring represented the 
symmetric structure with Xs/Xc satisfying equation (2) and a column 
with a quadratic spring—the asymmetric one with Xs/Xc satisfying 
equation (3). 

The dynamic counterparts of equations (2) and (3) were derived 
by Budiansky and Hutchinson [3] for step loading: 

(1 - Xd/Xc)3/2 - (3V6/2)|£~| V^feXd/Xc = 0 (4) 

(1 - Xd/Xc)
2 + (16/3)a^\d/Xc = 0 (5) 

These results were further generalized in reference [5] for buckling 
under loading characterized by a finite length of time of load appli
cation (rectangular and triangular loadings) for both quadratic and 
cubic structures. In reference [6], Budiansky considered also a qua
dratic-cubic structure under dynamic loading—in particular the case 
where a quadratic structure with a < 0 and £ > 0 is converted into a 
quadratic-cubic model by incorporation of a cubic term o£3 with 6 > 
0. Numerical analysis showed that with the term b£3 included, the 
original results (with b = 0) are somewhat on the conservative side, 
i.e., the term turns out to have a stabilizing effect. In reference [7], 
Hoff demonstrated the static imperfection-sensitivity of a qua
dratic-cubic system characterized by a < 0 and b > 0. Hansen and 
Roorda [8] considered static and dynamic buckling of an imperfect 
beam on a quadratic-cubic elastic foundation, assuming that the 
initial imperfection function is coconfigurational with the buckling 
mode of the associated linear structure—and solved the problem 
within the single-mode Galerkin approximation. They obtained re
lationships between the critical load (both the static and dynamic 
cases) and the initial imperfection amplitude, valid for rather high-
order imperfections but irreducible to those obtained by Budiansky 
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Fig. 1 Idealized column 

and Hutchinson [3], owing to inclusion of nonlinearities in the de
formation analysis. 

Recently, Tatsa, Tene, and Baruch [9] considered the practicability 
aspect of formulas (2) and (3). Their main argument was that in 
complex structures where the initial postbuckling coefficient "a" (and 
naturally "6") does not lend itself to analytical determination, it would 
be difficult to establish numerically whether "a" really vanishes— 
thereby precluding a reliable conclusion as to the behavior of the 
structure. In these circumstances, possible imperfection-insensitivity 
may be overlooked in a symmetric structure, which would be desig
nated as symmetric because of a very small value found for "a." The 
foregoing authors showed that for such structures both initial post-
buckling coefficients should be simultaneously taken into consider
ation. They considered the Budiansky-Hutchinson model with the 
quadratic-cubic spring; a numerical solution was found by deter
mining Xs/Xc, and it was shown that (a) for large values of "a ," the 
"b" values may be neglected, and (b) for a < 0.01 and b < 0 " a " can 
be taken as zero. 

The present work was motivated by awareness that there are 
structures nonsymmetric in principle and necessitate a generalization 
of equations (2)-(5). Although the motivation here differs totally from 
that of reference [9], the same model, including the quadratic-cubic 
spring, is considered. Both static and dynamic cases are examined 
(represented by generalizations of equations (2) and (4), respectively), 
and conditions for sensitivity to initial imperfections are formu
lated. 

Static Buckling of Nonsymmetric Structures 
The simple model (suggested first by Budiansky and Hutchinson 

[3]) of an idealized column constrained by a nonlinear spring is shown 
in Fig. 1. The restoring force F is supposed to be related to its short
ening (or elongation) x by 

F = fei£ + h2e + ks? (6) 

where £ = x/L; no restriction is imposed for the moment with regard 
to the sign of fe2 and fe3 (fci > 0). Equilibrium of the single member at 
buckling dictates 

Fig. 2 Nondimensional load-additional displacement curves for nonsymmetric 
structure (a = —1.5, b = 25) 

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 % 

\ = I/2FVT=T? = V2(fei£ + k£* + k^VT^i (7) 

Fig. 3 Nondimensional load-additional displacement curves for nonsymmetric 
structure (a = —7.5, b = 25) 

and for small values of £, the following asymptotic result is ob
tained: 

X = Xc(f + a£2 + 6 P + . . . ) , Xc = k!/2 (8) 

and "a" and "b" are defined by 

a = k2/kh b = k3/k1-0.5 (9) 

Equation (8) represents the axial load-additional displacement 
relationship. The diagram X - £ consists of two branches: the straight 
line £ = 0 and a parabola which cuts the X-axis at the value of the 
classical buckling load Xc: 

X/Xc = 1 + a£,+ 6£2 = 1 - a2/46 + 6(£ + a/26)2 (10) 

and its vortex at (—a/26; 1 — a2/46). Consequently 

(X/Xc)min = l - a 2 / 4 6 , for 6 > 0; 

(X/Xc)max = 1 - a2/46 for 6 < 0 (11) 

In the general case a ^ 0, b ^ 0 the structure is designated as non-
symmetric; it is said to be symmetric if a = 0,6 •=£ 0 and asymmetric 
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Fig. 4 Root-locus plots 

if a ^ 0, 6 = 0. In the latter case the parabola (10) degenerates into 
the straight line X/Xc = a£ + 1. Typical X - J curves for nonsymmetric 
structures are shown in Figs. 2 and 3. Note that the X - £ curve for a 
= —ai and specified "b" represents the mirror image of its counterpart 
for o = ai and " 6 " as before. 

We now proceed to the realistic, imperfect, structure. Given that 
unloaded structures have an initial displacement x = L£, then equi
librium dictates instead of equation (7) the following formula: 

A(f+0 = %*Vl-tf+l)2 

(12) 

and for small values of £, the following asymptotic result is ob
tained: 

X(£ + £) = Xc(£ + a£2 + 6£3 + . . . ) (13) 

Equation (13) indicates that £ and £ have the same sign (i.e., the ad
ditional displacement of the system is such that the total displacement 
£ + J is increased by its absolute value). Otherwise the assumption 
££ < 0 would imply X < 0 for 0 < |£| < £ i.e. the presence of tension 
which is contrary to our formulation of the problem. Note also that 
the graph X/Xc versus £ for an imperfect structure issues from the 
origin of the coordinates. Additional zeros of X/Xc coincide with the 
zero points (—a ± y/a1 — 46)/6 of the parabola (10), representing the 
behavior of a perfect structure. 

We now seek the buckling load Xs, which is defined as the maximum 
of X on the branch of the solution X — £ originating at zero load, for 
specified £, 

To be able to conclude whether the structure is sensitive to initial 
imperfections or not, we have to find whether the first derivative of 
X with respect to £ 

dX/d£ = <M£,£)/(£ + £)2; 
: £ + 2a££ + (a + 36£)£2 + 26£3 (14) 

has at least one real root. For our purpose, it suffices to examine the 
numerator 0(£, £). The structure is imperfection-sensitive if the 
equation $(£, £) = 0 has at leastone real positive root for £ > 0, or at 
least one real negative root for £ < 0. 

Using Descartes's rule of sign, it is readily shown that the structure 
is imperfection-sensitive for b < 0 (irrespective of the sign of a and 

Ims 

5.2: a3<0, b^0, £>0, 3b<a2<4b. 

« * ™ ^ 0 QiiaaiMn)( 

a 
2b 

Res 

Ims 
5 . 3 : a tO, b?0, £>0, a2>4b. 

^ ^ O — —H jpnO— 

a 
2b 

Res 

Fig. 5 Root-locus plots 

£) and insensitive for b > 0 and a£ > 0. The case 6 > 0 and a£ < 0 can 
be treated by Evans's root-locus method [10], frequently used in 
control theory. 

Let us consider first the particular case b > 0, a < 0, and £ > 0. The 
formal substitution £ ->- s, where s = Re s + i Im s is a complex vari
able, in equation (12) yields 

1 + £>(s) = 0, Tp(s) = (36s2 + 2as2 + l)(o + 2bs)- 1s" 2 (15) 

We now construct the root-locus plot with £ varying from zero to in
finity (obviously, for us only £ « 1 has physical significance). For £ 
approaching zero the roots of equation (15) are the poles of tp{s) 
marked by "crosses" (X's): 

si = S2 = 0, S3 = - a / 2 6 (16) 

The £ -*• 0° points of the root loci approach the zeros of \p{s), marked 
by "circles" (O's): 

si,2 = ( l /36) ( -a ± V a 2 - 3 6 l ) (17) 

tf>(s) has three poles: one double, at zero, and another at (—a/2b) > 
0. A root locus issues from each pole as £ increases above zero; a root 
locus arrives at each zero of \p{s) or at infinity, as £ approaches infinity. 
For the case a = 36 both "circles" coincide. As is seen from Fig. 4.1, 
equation (15) has two real positive roots, and therefore the structure 
is imperfectioD sensitive for any £ > 0. For a2 < 36 both "circles" are 
complex (Fig. 4.2); for certain values of £ (which is called critical one, 
Icr,s) a pair of loci break away from the real axis. For£ > £cr]S equation 
(15) has no real positive root and, consequently, the structure is im
perfection-insensitive. The breakaway point is found as the root of 
equation 
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dC/ds = 0, C(s) s s
2(a + 26s)(1 + 2as + 36s2)-1 (18) 

The equation has only one real root SQ = —a/36. Appropriate value 
off equals —C(so).' 

f c r , s = - ( a 3 / 9 & ) ( 3 6 - a 2 ) - (19) 

Static buckling load associated with £ = so and £ = £cri,, is 

As/Ac = (a/36)(2a2/96 - l)(fCI,s - a/36)"1 (20) 

For example, for 6/a2 = 2/3, we have |c r , s =• —(l/6a), and As/Ac = 1/2, 
and £ > £cr,s static snap-buckling does not occur; this is in agreement 
with the result obtained by Budiansky for this particular b/a2 ratio 
(reference [6, p. 95]). 

For the case a2> 3b (see Fig. 5) there always exist two real positive 
roots to equation i//(£,£) = 0 and the structure is imperfection-sensi
tive. 

Consequently, the structure turns out to be imperfection-sensitive 
for a2 £ 36; in range a2 < 36 the structure is imperfection sensitive 
if | £ Icy,. We next consider the case a > 0, 6 < 0, | < 0. It is readily 
shown that the inverse root loci for — °° < £ g 0 are tbe mirror image 
of the original loci for 0 tk £ < °° with respect to the imaginary axis. 
The system is imperfection-sensitive if o2 a 36; and also for a2 < 36 
if £ = £cr,s as per equation (19). For the particular case a = 0 the 
structure is imperfection-sensitive if 6 < 0 (for both £ > 0 and £ < 0) 
and insensitive if 6 > 0. For 6 = 0, the structure is imperfection-sen
sitive if a£ < 0 and insensitive in the opposite case. 

As for the imperfection-sensitive structure, differentiating equation 
(13) with respect to £ and setting 

dA/d£ = 0, A = A., (21) 

we obtain, after extensive algebraic transformations, the relation 
between the buckling load As and initial imperfection amplitude £, 
the relationship 

1 
A» 

Ac 

a2\3 
1 = 

3b) 

27 , 
6 

4 
\"t — 1 
36 

U 
-\ 

Kl 
2 a» A.,-I 

+ —£ 
27 6 2 Ac

 ? 

(22) 

which reduces to the classical equation (2) for. a = 0 and 6 < 0. Note 
that the displacement £, corresponding to A.,/Ac is given by 

£i,2 = [-a ± V a 2 - 36(1 - As/Ac)]/36 (23) 

where £1,2 depend on £ via As/Ac. From equation (22) the static 
buckling load is obtainable, given the initial imperfection £. The 
meaningful root A.,/Ac of equation (22) is the greatest of those which 
meet the requirement ££ > 0. It should be noted that for £ —• <= we 
formally have As/Ac

 —>' 0, and equation (23) reduces to equation 
(17). 

D y n a m i c B u c k l i n g of N o n s y m m e t r i c S t r u c t u r e s 
In the dynamic setting, the central hinge carries a mass M, and the 

system is subjected to an axial force \f(t). Instead of equation (13) 
we have 

I M 2 + [1 - A/(t)/Ac.]£ + a£ 2 + 6£3 = [A/(t)Ac]f (24) 

where wi2 = Mlk\. As an example, we have the load represented by 
the Heaviside step function, which vanishes for t < 0 and equals unity 
for t > 0. The first integral of equation (28) subject to the initial 
conditions £ = 0, £ = 0 at t = 0, is readily found to be 

£/co!2 + (1 - A/Ac)£2 + - af3 + - 6£4 = 2(A/Ac)|f (25) 

and the corresponding integral curves satisfy 

± P |2(A/AC)|£ - (1 - A/Ac)£2 

Jo 

9 1 

3 2 

-1/2 
d£ = mt (26) 

where the left-hand side can be evaluated in terms of elliptic integrals 

mi. 

For sufficiently small A/Ac. the motion is periodic, with its amplitude 
satisfying 

(1 - A/Ac)£max + - a £ 2
m a x + - 6£3

max = 2(A/AC)| (27) 

This equation is identical with equation (44) in Budiansky's paper 
|G|. Further, following Budiansky and Hutchinson [3], the dynamic 
buckling load Aw is defined by the criterion 

dA/d£n 
: 0, A = Aw (28) 

Note that equation (27) identifies with equation (13) on the following 
formal substitution: 

£-£, £ — 2£, a^-a, 
3 

(29) 

Analogically, all conclusions in the static case are readily extended 
to the dynamic one; namely, the structure under step loading is im
perfection sensitive for 6 < 0 (irrespective of the sign of "a" or £), and 
insensitive for 6 > 0 and a£ > 0; for 6 > 0 and a£ < 0, it is sensitive for 
any £, given the following inequality: 

a2 2: (27/8)6 (30) 

(obtainable from its static counterpart a2 £ 36 by formal substitution 
(29)), and also when 

a2 < (27/8)6 

lor £ £ £criw where 

£cr,d = -(4/27)(a3/6)[(27/8)6 - a 2 ] - ' 

(31) 

(32) 

The £max value associated with £cr>w equals 4a/9b and, consequently, 
the dynamic buckling load is 

Ac 9 6 181 6 J \ 9 6, 

4 o \ - i (33) 

At £ = £cr,rf the concept of dynamic buckling is preserved by asso
ciating Aw with the point of inflection in the variation of A with £max-
Comparison of the latter results with their static counterparts shows 
that the interval 36 < a2 < (27/8)6 is characterized by duality: the 
structure is statically imperfection-sensitive but dynamically im
perfection-insensitive. In the particular case 6/a2 = 2/3, considered 
by Budiansky (reference [6, pp^95-96]), £cr,w = -8/45a and |cr]w > |CI.]S 

and consequently, the interval |c r , s < | < £cr,d is similarly characterized 
by duality—the reverse of the preceding case. For 6/a2 = 1/3 also 
considered in reference [6], the structure is statically imperfection 
sensitive for any £, but dynamically imperfection insensitive, £cr,d 
being (-32/9a). 

Finally the relation between the buckling load Aw and the initial, 
imperfection £ is given by 

Ad 

Ac 

8 a 2 | 3 

27 6 / 
- 2 7 6 

8 
^[ l -
9 6 \ 

Aw 

Ac 

64 a3 - Aw 
+2f — 

729 62 Ac 
(34) 

Tn the case a < 0, 6 < 0 with | such that As/Ac £ 1 and Aw7Ac £ 1, | is 
readily eliminated by correlating equations (22) and (34) for a given 
structure with a given imperfection. The result relates Aw to As; 

276 I Ac 27 6 

1/2 

Aw 4 

276 Ac 36/ 

64 Q3. 

129 b2 

1 - -
_2_of 
27 62 

(35) 

In this form, Aw/As is no longer directly dependent on the imperfec
tion, but via As/Ac. For vanishing "a," the expression readily reduces 
to that obtained by Budiansky and Hutchinson [3] 

Ad/A.v = (\/2/2)(Ac - Aw)3/2(Ac - As)"3/2 (36) 
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In the general case, both formulas (22) and (29) have to be applied 
separately to obtain the Ad/A,, versus As/Ac relationship. Equations 
(22) and (34) are the respective analogs of equations (20) and (24), in 
Hansen's and Roorda's study of an imperfect beam [8], obtained by 
a single-term Galerkin approximation. As already noted, Hansen's 
and Roorda's formulas do not reduce to equation (36), because of 
inclusion of nonlinearities in the beam deformation. 

Comparison of equations (22) and (34) shows also that as the im
perfection tends to zero, As - • \c and \d -* Ac. For very small im
perfections, the Arf/Ac ratio can be taken as unity and equation (39) 
reduces to 

8 / _Ad__8_o2\3 l 

276 \ Ac 27 6 9b\ 

\A 64 o 3 

A j + 729 62 

(34) has to be applied to find Ad/Ac as function of initial imperfection 

I 
6 Formula (22) generalizes Koiter's result, given by equation (2) 

for the symmetric structure, and formula (34) generalized Budiansky's 
and Hutchinson's result given by equation (4) for the symmetric 
structure. 
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= 2 
276 

af\2 

3b, 

1/2 

3b I A J 27 62J 
—| (37) R e f e r e n c e s 

(38) 

For vanishing "a," Thompson's [12] expression is obtained 

(Ac - Ad)3'2 = ^ ( A c - As)
3 '2 

Conc lus ions 

The main conclusions of this paper are as follows: 

1 Formulas (3) and (5) have to be used for b = 0 and a \ < 0, for
mulas (2) and (4) for a = 0 and b < 0. 

2 The general nonsymmetric structure under static loading is 
imperfection-sensitive for b < 0, irrespective of the sign of "a" or £; 
for b > 0 and a f < 0 it is imperfection-sensitive when a2 a 36 for any 
| , and when a2 < 36 in the interval f £ t;cr,s with the critical imper
fection as per (19); it is imperfection-insensitive for 6 > 0 and a £ > 
0. 

3 For the nonsymmetric imperfection-sensitive structure formula 
(22) has to be applied to find As/Ac as function of the initial imper
fection £. 

4 The general nonsymmetric structure under step loading is im-
perfection-sensitjve for 6 < 0 irrespective of the sign of "a " or £. For 
6 > 0 and a £ < 0 the structure is imperfection-sensitive when a2 g 
(27/8)6 for any | , and also when a2 < (27/8)6 in the interval, £ s £Cr,d 
with the initial imperfection as per (32); it is imperfection-insensitive 
for 6 > 0 and a £ > 0. These results similar in nature to the static ones, 
are readily obtained by formal substitution. 

5 For the imperfection-sensitive nonsymmetric structure formula 
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Stability of a Beam on an Elastic 
Foundation Subjected to a 
Nonconservative Load 
/re t/zis investigation, the influence of a Winkler type of elastic foundation on the stability 
of the cantilever beam subjected to a nonconservative load which consists of a vertical and 
a follower components is studied. In addition to the common transverse foundation modu
lus, a rotatory foundation modulus is considered. Approximate solution is obtained by 
using Galerkin's method. Numerical calculation are reported and displayed for various 
combinations of the nonconservativeness parameter, transverse and rotatory modulus 
of the foundation, distance of the point of application of the load and that of the 
transverse spring. As a result of the numerical study unexpected feature of stability of 
the cantilever beam in contrast to the behavior of the column is identified. 

Introduction 
The state of stability of a beam resting on the Winkler elastic 

foundation subjected to a follower load was investigated by Smith and 
Hermann [1]. They found an unexpected result that the critical sta
bility load for flutter type of stability loss is completely independent 
of the modulus of Winkler foundation. The problem from which the 
foregoing result was drawn is a uniform cantilever column subjected 
to a concentrated follower load applied at its free end. Sundararajan 
[2] extended the study and proved the following theorem: "The critical 
load of an undamped, linearly elastic column subjected to either 
conservative or nonconservative stationary loads does not decrease 
due to the introduction of a Winkler-type elastic foundation having 
a modulus distribution geometrically similar to the mass distribution 
of the column." The influence of the variable foundation modulus on 
the stability of the column with constant mass distribution was in
vestigated for the end loading by Hauger and Vetter [3] and for the 
uniformly distributed loading by the author [4]. It was found that the 
elastic foundation with variable modulus may have either a stabilizing 
or a destabilizing effect on the flutter load. The column on an elastic 
foundation with constant modulus subjected to an end load was in
vestigated by Becker, Hauer, and Winzen [5] by considering the ex
ternal damping of the elastic foundation, the internal damping of the 
column and a rotatory foundation modulus. They found that an in
creasing rotatory foundation modulus increases the stability of the 
column. In the aforementioned studies it was assumed that the 
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foundation was a Winkler type, i.e., the foundation pressure and 
moment exerted by the foundation are proportional to the deflection 
and to the rotation of the foundation at the same point, respectively. 
The proportionality coefficients which correspond to the foundation 
modulus were constant or variable along the column. 

Menditto [6] investigated the stability behavior of the same can
tilever column by assuming it on an elastic foundation with a shear 
layer, i.e., on a Wieghardt foundation. Anderson [7] studied the sta
bility of the cantilever and the clamped-hinged column subjected to 
either a uniformly or a linearly distributed tangential load. It was 
assumed that the column is resting on a Wieghardt-type elastic 
foundation. 

The purpose of this study is to investigate the lateral stability of 
a narrow rectangular cantilever beam subjected to uniformly dis
tributed vertical and follower loads. The beam is assumed to be on 
a Winkler-type elastic foundation which responds to the deflection 
and to the rotation of the beam. Since the stability of the same beam 
was studied by the author [8] without considering any foundation, in 
particular, the effect of the constant modulus of the foundation on 
the divergence and flutter stability loads are investigated here. 

Statement of the Problem 
Consider a cantilever beam of length I with a narrow rectangular. 

cross section of height h. The beam is resting on two types of elastic 
foundation with constant modulus Kw and Kg which exert a foun
dation pressure and a foundation moment proportional to the de
flection and rotation of the beam, respectively. They can be considered 
as transverse springs with modulus Kw and torsional springs with 
modulus Kg. It is assumed the transverse springs are attached to the 
beam at a distance / measured from the centroid of the cross section. 
The cases / = — 0.5ra, 0 and 0.5h correspond to the springs' attachment 
to the beam at the bottom, at the centroid and at the top of the cross 
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Fig. 1 Cantilevel beam subjected to uniformly distributed vertical and fol
lower load 

section. Loading of the beam consists of a uniformly distributed 
vertical load qv and follower load <jy as shown in Fig. 1. The distance 
of the point of application of the loads e is measured from the centroid 
of the cross section. The loading cases where the loads are applied at 
the bottom, at the centroid and at the top of the cross section corre
spond to the values of e = —0.5ft, 0, and 0.5ft. 

The stability or instability of the beam is characterized by the be
havior of a small disturbance from its equilibrium state. The distur
bance of the beam appears as a lateral deflection W(X, t) and as an 
angle of twist Q(X, t) as shown in Fig. 1. The equations of the lateral 
and torsional motions of the beam about the undisturbed form of 
equilibrium are obtained combining the equilibrium equations and 
the relation of the bending and torsional deformations. The functions 
W and 0 are governed by these equations which can be written in the 
following form [8]: 

d*W d2W 

+ qfQ-
ql2 d2 

2 dX2 "f 0, 

d2e a2e 
GJ — -mr2-—~KJ(W + fQ) + (que - K»)Q 

\ l)dX 2 dX [\ IJ 

\2bW\ 

dX 
0, (1) 

where EI is the small bending rigidity, GJ the torsional rigidity, r the 
polar radius of inertia, m mass per unit length of the cross section, X 
the spatial coordinate along the axis of the beam, t the time and q = 
qf + qv. Due to the narrowness of the cross section the vertical de
flection and the warping rigidity are neglected. It is assumed that the 
separation of variables is possible, and the governing equations (1) 
have solutions of the form 

W(X, t) = lw(x)ei"t, Q(X, t) = B(x)ei"t, 

where w is the frequency of the lateral and torsional vibrations of the 
beam. Substitution of these solutions into equation (1) gives 

^ I V + (kw
2 - o>b

2)w + [\frw
2 - (1 - a)qb

2]6 

+ 2(1 - x)qbW - 0.5(1 -x)2qb
28" = 0, 

nd" + [ 7 2 X W + (1 - a)V\qb
2 - ke

2 - t2\ka
2]8 

+ 0.5q6
2(l - x)2w" - ^kw

2w = 0, (2) 

where the prime denotes differantion with respect to * and, the ad
ditional parameters are defined as follows: 

h X e f 
x = —, r\ = - , j = —, , 

I h h q I 
. « 2 £ r 

T = ft' 

GJ 
qb* 

ql* 

EI' 

ma 2 ! 4 

0>6 '• 
EI' '" EI' "'" EI 

EI EI 

The boundary conditions of the problem are written as follows: 

(3) 

w(0) = w'(0) = 0, w"(l)=w"'(l) = 0, 

6(0) = 0, 0'(1) = 0, (4) 

which imply that the deflection, the slope of the deflection and the 
rotation of the cross section at the clamped end; and the bending 
moment, the shearing force, and the torsional moment at the free end 
have to vanish. 

A p p r o x i m a t e S o l u t i o n 
To propose an exact solution to the nonself-adjoint eigenvalue 

problem given by equations (2) and boundary conditions (4) is a dif
ficult task, if not impossible. Therefore, an approximate solution is 
carried out by using Galerkin's method. To this end, the lateral de
flection w (x) and the angle of twist 0(x)areexpandedinaserieswith 
undetermined coefficients as follows: 

w(x) = Z Cwjwj(x), 8(x) = £ CtjBj(x), 
i i 

(5) 

where Cwj and Coj are constants and, uij(x) and 6j{x) are the coordi
nate functions which have to satisfy the boundary conditions (2) 
identically. These functions are assumed as 

/ * • • , sin a; + sinh a; 
Wj(x) = sin ajX — sinh a/x + (cosh ajX — cos ajx), 

cos ay + cosh ay 

_ . &y7TX 
(6) 6dx) = sin 

z 
where ay is the root of the transcendental equation 

1 + cos ay • cosh ay = 0 

and bj = 1, 3, 5 , . . . The selected coordinate functions (6) correspond 
to the uncouple lateral bending and torsional-free vibrations of the 
beam. 

By substituting equation (5) into equations (2) two residual func
tions are obtained. Galerkin's method requires these functions have 
to be orthogonal with respect to each coordinate function on the 
definition domain of the problem. After the indicated integrations 
which appears at the orthogonalization process are performed nu
merically, a system of homogeneous algebraic equations for the con
stant Cwj and Coy is obtained. The trivial solution of the system cor
responds to the undisturbed form of the beam. Nontrivial solutions 
can be obtained if and only if the determinant of this system vanishes. 
This condition yields a relation between the nondimensional load qb 

and frequency <j)b, and illustrates the eigencurve of the beam on the 
load-frequency plane. This curve characterizes the static and the 
dynamical behavior of the beam. The free vibration of the beam occurs 
at the intersection point of the eigencurve with the frequency-axis, 
and the intersection point with the load-axis corresponds to the di
vergence instability. Finally, the flutter type of loss of stability occurs 
at the point of the eigencurve where the two vibration frequencies 
approach each other and coincide having a double root. 

N u m e r i c a l R e s u l t s 
The numerical calculations were performed on the B3700 Computer 

at the Computer Center of the Technical University, Istanbul. Re
membering that the cross section is a narrow rectangular strip, the 

• shape constants are found to be 

T = 0.5/V3 , n =. 2(1 - fi) 

where fi is Poisson's ratio. As usual the bending rigidity EI is replaced 
by EI 1(1 - fi2) because of the platelike bending behavior of the narrow 
rectangular cross section. The numerical computations are carried 
out by putting X = 0.1, fi = 0.3. The eigencurve of the beam is drawn 
for various values of the nondimensional parameter: the nonconser-
vativeness of the loading a, the distance of the point of application 
of the loads q and that of the transverse spring f, the modulus of the 
transverse springs kw and that of the rotational springs fee. Further, 
the nondimensional frequency parameter oij is assumed to be a 
complex quantity in general and expressed as 
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Fig. 2(a) Elgencurves of the cantilever beam for the case a = 0, ij — 0, 
f = 0 and ke = 0 

Fig. 3(a) Elgencurves of the cantilever beam for the case a = 1, ij = 0, 
f = 0 and kg = 0 

Fig. 2(b) Elgencurves of the cantilever beam for the case a = 0, j) = 0, 
f = 0 and * „ = 0 

Fig. 3(6) Elgencurves of the cantilever beam for the case a = 1, J) = 0, 
f = 0 and Jc„ = 0 

0>b = U6fl + lUbl, I = ( - 1 ) 1 / 2 , 

where oibR and «(,/ are real quantities. The frequency parameter ap
pears as either purely real (uibi = 0) or purely imaginary quantity (b>bR 
= 0), which corresponds to the oscillatory motion or to the divergence 
motion of the cantilever beam, respectively. Because of symmetry of 
the beam only positive values of the load parameter are consid
ered. 

Figs. 2(a, b) illustrates the eigencurve of the beam on elastic 
foundation subjected to vertical load for various values of the modulus 
of foundation. It is seen that as the value of the foundation modulus 
kwoxke increases, the corresponding critical divergence loads increase 
monotonically. While the first two free-vibration frequencies increase 
with the foundation modulus kw, no variation occurs as the modulus 
ke increases, because they correspond to the bending vibration of the 

beam. Since the free-vibration frequencies of torsional motion are 
high, they are not seen at the figures. 

The eigencurves of the beam subjected to follower load are repre
sented in Figs. 3(a, b). They show that as the value of kw increases, 
the eigencurve is shifted further paralel to the frequency-axis on the 
load-frequency plane. Smith and Hermann [1] and Sundararajan [2] 
have shown that the shape of the eigencurve does not change during 
this shifting for the column the disturbance of which is defined by one 
parameter, i.e., by its deflection only. As it is seen in Fig. 3(a), this is 
not valid for the cantilever beam which has two freedom functions, 
i.e., the deflection and the rotation. The flutter load of the beam de
creases slightly as the modulus kw increases. Moreover a second 
branch of the eigencurve is seen for larger values of kw. This branch 
intersect the load-axis at two points,-which correspond to the diver
gence loads of the beam. Because these divergence loads themselves 
are in the instability region, their importances are lost. This important 
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Fig. 4(a) Eigencurves of the cantilever beam for the case 7} = 0, f = 0, Fig. 5(a) Eigencurves of the cantilever beam for the case a = 0, f = 0, 
k„ = 10 and k6 = 0 fc„ = 10 and kg = 0 

Fig. 4(b) Eigencurves of the cantilever beam for the case ij = 0, f = 0, Fig. 5(6) Eigencurves of the cantilever beam for the case a = 0, f = 0, 
kw = 0 and kg = 10 kw = 0 and fc„ = 10 

fact indicates that a "critical" load can not always be a critical one, 
when it is found in a static investigation. Quite different results are 
displayed in Fig. 3(6) where the rotation modulus ko is varied. The 
flutter load increases with the modulus fe8. The stabilizing effect 
proceeds until the eigencurve intersects the load-axis where the di
vergence load comes into being. It is seen from the figures that there 
may be a jump in the value of the critical load and the type of stability 
loss will change from the flutter to the divergence. The divergence load 
will increase with further increase of the modulus kg. 

Figs. 4(a, 6) illustrate the variation of the eigencurve with the 
nonconservativeness parameter a. The two branches of the eigen
curves are seen in Fig. 4(a), where the modulus kw has a certain value 
while ko vanishes. Approximately up to a = 0.37 the two branches 
intersect the load-axis at the first two divergence loads. The first di
vergence load which is the critical one increases with the parameter 
a. With further increase in a the two branches of the eigencurve co

alesce and then appear again approximately for a > 0.38. But this time 
one branch intersects the load-axis two times while the other inter
secting the frequency-axis appears above the load-axis, and the flutter 
type of instability occurs on it. The flutter load which controls the 
stability domain decreases as the nonconservativeness parameter a 
increases. Fig. 4(6) shows the eigencurve of the beam which rests on 
an elastic foundation with the modulus kg only. As it seen that the 
flutter instability appears for larger values of a. As the parameter a 
decreases the flutter load increases, and then the flutter instability 
gives its place to the divergence instability. The divergence load be
comes smaller with the nonconservativeness parameter a. 

The influence of the point of application of the loads y\ is illustrated 
in Figs. 5(a, 6) for the conservative loading cases. They show that the 
type of stability loss does not change and the divergence load becomes 
greater when the loads move downward. This fact is more evident 
when the foundation has a modulus ko instead of kw. Finally, Fig. 5(c) 
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Fig. 5(c) Eigencurves of the cantilever beam for the case a = 1, t\ = 0, 
k„ = 10 and fcj = 0 

represents the influence of the bounding point of the transverse spring 
f. As it is seen, when the loads move upward the flutter type of sta
bility loss vanishes and the critical load will be a divergence one. 

Concluding Remarks 
In all the foregoing cases, the critical load of the cantilever beam 

either increases or decreases with the introduction of the elastic 
foundation. When the loading is a follower type it decreases with the 
transverse spring constant and increases with the rotation spring 
constant which were intuitively unexpected and seemingly unknown 
behavior of the cantilever beam. Many of these results obtained in 
this study are in contrast to the before going results which are reported 
for the column resting on a Winkler foundation without any rotatory 
modulus. 
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Timoshenko's Shear Coefficient 
From a Beam Subjected to 
Gravity Loading1 

The Kennard and Leibowitz method of obtaining the shear coefficient, by equating cen
ter-line curvature of a Timoshenko beam to the curvature of a beam subjected to uniform 
gravity loading, is extended to arbitrary monosymmetric sections. The resulting expres
sion for the coefficient is evaluated for several sections and comparison made with expert 
mental and exact theoretical results. 

Introduction 
In a recent paper Kaneko [1] reviews the various theoretical 

methods of determining the shear coefficient in the Timoshenko 
theory for beam flexural vibration and makes a comparison with the 
results of several experimental investigations into flexural wave 
propagation and concludes that the values K = 6(1 + v)2/(l + 12v + 
4i<2) for the circular section, and K = 5(1 + p)/(6 + 5v) for the rectangle 
provide the best agreement. Kaneko also notes that these values may 
be obtained by equating the Timoshenko phase velocity predictions 
to the long wavelength approximate solutions of the exact Poch
hammer-Chree theory [2] for the circular section and the plane stress 
solution for a thin rectangular section by Lamb [3], respectively. In 
a paper by the present author [4] it is shown that the foregoing shear 
coefficient for a circular section varies but slightly with frequency in 
order to insure equivalent phase velocity predictions between the 
Timoshenko theory and the Pochhammer-Chree theory for 
frequencies up to the cutoff point for the second branch of flexural 
wave propagation for Poisson's ratio v > 0.25. 

Since the original definition of the coefficient, as the ratio of average 
shear stress on a section to shear stress at the centroid has been clearly 
shown to give unsatisfactory results, the suitability of any other def
inition must rest on its ability to produce theoretical predictions in 
agreement with experimental results and the predictions of exact 
flexural wave propagation theories. Unfortunately exact solutions are 
available for only one class of section, i.e., the hollow circle, given by 
Aremenakas, Gazis, and Herrmann [5] which includes the case of the 
solid circle. The plane stress solution for the thin rectangle [3] is un-

1 Part of this work was performed while the author was a research student 
at Exeter University, England. 

2 Formerly, Department of Civil Engineering and Engineering Mechanics, 
McMaster University, Hamilton, Ontario, Canada, L8S 4L7. 
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and will be accepted until June 1,1980. Readers who need more time to prepare 
a discussion should request an extension from the Editorial Department. 
Manuscript received by ASME Applied Mechanics Division, December, 
1978. 

likely to give results valid for a more compact rectangular or square 
section. The frequency equation for the elliptic section has been given 
[6] but because of its complexity phase velocity predictions have not 
been produced. 

The suitability of the aforementioned expressions for the circular 
and thin rectangular sections and the fact that neither expression is 
given by any well-known theoretical determination of the coefficient, 
led the author to reconsider previously published theoretical methods 
of obtaining the coefficient. With few exceptions the methods of 
previous investigators can be split into two types. The first consists 
of equating the Timoshenko theory frequency or phase velocity pre
diction to some special exact solution, such as thickness shear waves 
or Rayleigh surface waves; the suitability of this method has already 
been discussed by the present author [4]. The second involves calcu
lating the extra deflection in a beam due to shear deformation, usually 
employing Saint-Venant flexure shear stress distribution as an ap
proximation to the stress distribution present in a beam performing 
flexural vibration. One of the most convincing definitions, by Cowper 
[7], is a byproduct of the derivation of Timoshenko's equations by 
integration of the equations of equilibrium; again Saint-Venant 
flexure stress and displacements are assumed. 

Now exact, according to the mathematical theory of elasticity, so
lutions for static bending of beams of arbitrary section are available 
for four loading conditions: 

1 Beam in "pure bending" subjected to terminal bending mo
ments, which is of little importance here as there are no shear ef
fects. 

2 Classical Saint-Venant flexure of cantilevered beam subjected 
to a terminal shearing force. 

3 The cantilevered beam subjected to a uniformly distributed 
load, which has a shear stress distribution identical to condition 2. 

4 Beam subjected to uniform body force loading, the solution of 
which requires the solution to condition 2 and in addition, solution 
to an associated plane strain problem for the cross section. 

Of these exact solutions the gravity loading problem bears greatest 
resemblance to the loading conditions in a beam performing long 
wavelength flexural vibration. This discussion led the present author 
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to employ the Cowper method [7] to evaluate the coefficient for cir
cular and thin rectangular sections using the exact stresses and dis
placements for the gravity loaded beam, which gave expressions 
identical to Cowper's for Saint-Venant stresses and displacements; 
this suggested the Cowper formula to be either insensitive to changes 
in shear distribution or that a suitable definition must consider more 
than just the shear stress distribution. Since the stress and displace
ment distributions in the gravity loaded beam is similar in form to the 
Saint-Venant flexure case then the latter argument appears closer 
to the truth. 

This led the investigation to consider the Kennard and Leibowitz 
method [8] of obtaining the coefficient, by equating the center-line 
curvature of the Timoshenko beam to the curvature of the beam 
subjected to different loading conditions, in particular a thin rectangle 
carrying first a uniformly distributed load and second subjected to 
gravity loading, both loading conditions being considered by Ti
moshenko [9], giving values K = 20(1 + j/)/(24 + 15)/) and K = 20(1 
+ v)/(24 + 25v), respectively. 

Kennard and Leibowitz do not discuss which loading condition is 
the better approximation to the dynamically loaded beam and, in 
consequence, which shear coefficient is the more applicable. Appli
cation of the method to a circular section beam subjected to gravity 
loading gives the value K = 6(1 + v)2/(l + 12v + 4j>2), identical to the 
value obtained from approximation to the exact frequency equa
tion. 

A modification to the Kennard and Leibowitz method, equating 
the Timoshenko curvature to an integrated rather than center-line 
curvature, for the gravity loaded thin rectangle gave the value K = 
5(1 + v)/{6 + 5v) which is identical to the value from approximation 
to the plane-stress frequency equation, and did not alter the value for 
the circle. 

In the following, the Kennard and Leibowitz method is modified 
and extended to beams of arbitrary symmetric section by determining 
an expression for the integrated curvature for beams subjected to 
gravity loading; this requires only a knowledge of the Saint-Venant 
flexure function whereas a complete solution for the gravity loading 
problem requires solution of the associated plane strain problem. The 
solution to beams subjected to distributed loadings is discussed in 
detail by Love [10]. 

Using the new formula so obtained the coefficient is evaluated for 
several cross sections and comparison made with exact flexural wave 
propagation solutions and with published experimental results. 

For the sake of simplicity the planes of flexural vibration and 
gravity loading are taken to be a plane of cross-sectional sym
metry. 

T h e K e n n a r d a n d L e i b o w i t z M e t h o d 
The basis of this method is the recognition that the elementary 

moment-curvatUre relationship 

M = EL 
d2u 

' dz2 (1) 

does not hold for beams subjected to distributed loadings. Here 

M = bending moment 
E = Young's modulus 
Iy = second moment of area about y-axis 
u = centroidal displacement in * -direction 
z = beam axial coordinate. 

In Timoshenko's beam theory, bending moment is related to the 
centroidal cross-section rotation \j/ by 

M = EL 
dz 

or noting \j/ = du/dz — y, where y is the shear angle 

\dz2 dz; 

(2) 

(3) 

X 

Fig. 1 Uniform isotropic beam of monosymmetric cross section 

Thus, if an additional moment due to varying shear force along the 
beam is denoted by Ms where 

Ms = EL 
dy 

dz 

then the elementary relationship may be restored in the form 

d2u 
M + MS = EIV 

dz* 

(4) 

(5) 

Now the shear angle y is related to shear force by the expression 

Q = KAG y (6) 
where 

Q 
K 
G 
A 

= transverse shear force 
= shear coefficient 
= shear modulus 
= cross-sectional area 

from which (5) may be written in the form 

EL 
dz2 - = M + 

EIy dQ 

KAG dz 
(7) 

It is immediately obvious that this approach is only applicable to the 
case of distributed loading when dQ/dz ^ 0 

Kennard and Leibowitz proceed by equating the center-line cur
vature according to (7) to the curvature of a thin rectangle subjected 
to a uniformly distributed load and to gravity loading and obtain the 
two coefficients just given. 

C u r v a t u r e of G r a v i t y L o a d e d B e a m s 
A complete solution to the problem of a beam subjected to uniform 

body force loading requires a knowledge of the flexure function and 
solution of an associated plane strain problem; for the present purpose 
solution of the plane strain problem is not necessary. The notation 
here is essentially the same as Love [10] where the bending of beams 
subjected to uniformly distributed loadings is discussed in detail. 

We obtain the curvature from the shear strain relationship yxz = 
du/dz + tnv/dx. Differentiating with respect to z and rearranging 
gives 
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dx 

d2u = dyxz 

dz2 dz 

where direct strain tz = dw/dz. 
The strain components yxz and ez are given by Love [10] as 

«z = «o - (KO + KIZ + K2Z2)X + 2K 2 (X + xy2) 

Jxz = (*i + 2K2Z) 
dx wc2 

— + + 
dx 2 

where 

(8) 

(9) 

2L-

f 
X 

Ko> ti> "2 = cons tants 
v = Poisson's rat io 
X = flexure function 
£o = a constant, due to the center-line extension 

Substituting into (8) gives 

d2u 

dz2 
(KQ + K\Z + K2Z

2) + K2v(x2 — y 2 ) (10) 
( Q 1 [ 
M 

I- (L -z ) .) 

Thus a knowledge of the constants KQ, KI, K2, which depend on the 
manner of beam support, completely determines the curvature. 
Kennard and Leibowitz employ the center-line curvature obtained 
from (10) with x = y = 0. In the present modified procedure we employ 
the integrated rather than center-line transverse displacement given 
by 

pAgL 

Fig. 2 Simply supported beam—0= —p Agz: M= -pAg/2(L2 - z2); 
comparing with M= EI,(Ko + K-,Z+ K2Z

2) + constant; K2 = pAg/2EI, 

U = — 1 ( u dxdy 

giving the "integrated" curvature 

d2U 
_ „ = (*0 + KiZ + K2Z

2) + K2V — 
dz z A 

(11) 

(12) 

The integrated displacement (11) has been previously used in beam 
theories by Prescott [14] and Cowper [7] and its effect will be discussed 
later. 

Love [10] shows that the bending moment M = — JJ xazdxdy may 
be expressed in the form 

M = EIy(Ko + KIZ + K2Z2) + constant (13) 

where the constant in general is not zero, and is responsible for the 
failure of the usual moment-curvature relationship for distributed 
loadings; for bending by terminal couples, or terminal shear force the 
constant is zero. 

The constant in question is found by evaluating M at z = 0, i.e., 

M •• EIyK0+ constant = - CC x\Ee2«» + v(ox<® + ay^))dxdy 

constant = - J T x\E(ez^ + K0X) + v(aJV + ay^))dxdy (14) 

where the superscript (0) denotes that part of the stress and strain 
components proportional to z°. Following Love this may be expressed 
as 

M = EIy(Ko + Kiz + K2Z
2) - J T & ( 6 2 ( ° » + Kox)dxdy 

•£¥& [pg + rxzW] + xyT: .(D dxdy (15) 

The stress and strain components T*Z
(1>, TJ,2

( 1 ) , and e2
(0), are given 

by 

dx vx2 

\bx 2 

Tyz
(i> = 2GK2&+(2+v)xy\ 

ez^ = €0-KQx + 2K2(x + xy2) 

(16) 

2 
pAgL 

Fig. 3 Cantilevered beam—0= -pAg(z - L)\ M= pAg/2 (L2-2Lz + 
z2); comparing with M = Ely(K0 + K^z + K2z

2) + constant; K2 = pA-
gl2Elt 

Substitution of (16) into (15) gives the moment-curvature relation
ship 

M = EIy(K0 + KIZ + K2Z2) - 2EK2 J T * ( X + xy2)dxdy 
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+ — + 
2 4M dxdy — 2GK?,V Xf-(U \i>y 

+ (2 + v)xy\dxdy (17) 

(CW.) 

predictions of Timoshenko beam theory and the exact analysis [2] 
assuming long wavelengths, and also agrees with the value obtained 
by Kaneko [1] employing best curve fitting techniques. 

(b) Hollow Circle. Love [11] gives the stress function as 

H ( < — ^ 1 cos 8 + - cos 30 (25) 
4 

E x p r e s s i o n for the S h e a r Coef f i c i ent 
Using equation (12) to reexpress (17) in terms of the integrated radii, respectively, 

curvature and requiring equivalence to expression (7) gives Equation (21) gives 

where r, 8 are polar coordinates and a and b are the outer and inner 

K = 
6(1 + i>)2(l + m2)2 

(7 + 34m2 + 7m4) + p(12 + 48m2 + 12m4) + v2(4 + 16m2 + 4m4) 
(26) 

Ely dQ 

KAG dz ' 

+ 2GK2V 

+ 

2EK2 ('CX(X + xy2)dxdy + ^ CC (x2 - y2)dxdy w h e r e m = b/a- F o r a s o l i d c i r c l e m = °> a n d <26) r e d u c e s t o <24>-
-JJ 2 J J For a thin-walled tube, writing m = 1 = (26) gives 

S+?+(V)> ' ! | ' '** 
writing m = 1 = (26) gives 

1 + v 

2-Vv 

2GK2V CCxy I— + (2 + 
dx v)xy\ dxdy 

+ 
ElyKiV 

(c) Ellipse. Love [11] gives the stress function as 

2(1 + v)a2 + b2 

: - « 2 

(Iy-h) (18) 3a2 + b2 

1 
and for the simply supported beam, Fig. 2 and the cantilevered beam, 
Fig. 3, we have 

2a2 + 6 2 + ( a 2 - 6 > / 2 

3a2 + b2 (xs - 3ry2) (28) 

pAg dQ 
Ki = , — = -pAg 

2EIy dz 
(19) 

for an ellipse x2/a2 + y2/b2 = 1. 
Application of (21) gives 

After some manipulation and noting E/G = 2(1 + v), (18) gives 

K-
-A(l+v)%2 

2(1 + v)A j j x(X + xy2)dxdy + 2^(1 + v)Iy(Iy - Ix) + vA J j \\^—^\ ( ^ + — + l^ry2] + *y[Y+{2 + v)xy\ ,21 ^ . . . . ^ X dxdy 

(20) 

and dividing through by —2(1 + v)Iy gives 

K •• 

2(1 + v)Iy (21) 

"<'--«ixr-^^*-HTsiflMB + f+MH+"g+ e + ' t o •dxdy 

This differs from the expression given by Cowper [7] by the doubling 
in magnitude of the first term in the denominator, due to employing 
the integrated rather than center-line curvature thereby including 
the second-order lateral contraction inertia, and by the last term, 
which may be further expressed as 

*4 J T p i r l T'~dxdy+4 SSxyT'**dxdy (22) 

where T'XZ and T'yz are the shear stress components for a cantilevered 
beam subjected to a terminal shearing force W, and is due to presence 
of direct transverse stresses in the gravity loaded beam. 

E v a l u a t i o n of S h e a r Coef f ic ient for V a r i o u s Cross 
S e c t i o n 

(a) Circle. Love [11] gives the stress function as 

- - + - a2x + - (x3 - 3xy2) 

where a is the radius of the circle. 
Applying equation (21) the value of K is obtained as 

(23) 

(24) 
7 + 12;< + 4v2 

This is identical to the value obtained by equating phase velocity 

K-
12(1 + J>)2(3 + €2) 

(40 + 747 + 34r2) + c2(16 + 20y + 4p2) + e4(2j- - 6v2) 

where e = b/a. 

(d) Rectangle. Love [11] gives the stress function as 

(29) 

2 + v 
(x3 - Sxy2) + -(l + p)a2 + -vb2 

o 

nwx 
smh 

Avb3 - (-1)" b_ 
ir3 n=i n3 una 

cosh 

c o s ^ (30) 
b 

for the rectangle whose boundary is given by x = ±0, y = ±b. 
Equation (21) gives 

5(1 + i/)2 

K = -

6 + lli> + v2 5 - m 4 + 
90m5S\ 

r 6 J 

(3D 

where m = b/a, and S is the sum 
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.05 

.10 

.15 

.20 

.25 

.30 

.35 

.40 

.45 

.50 

.55 

.60 

.65 

.70 

.75 

.80 

.85 

.90 

.95 

1.00 

2.00 

Table 1 

oo 

s = I 
n=l 

tanh nit a 

.16808 

.32603 

.46738 

.58894 

.69006 

.77185 

.83650 

.88665 

.92499 

.95396 

.97567 

.99183 

1.00379 

1.01262 

1.01912 

1.02389 

1.02739 

1.02995 

1.03183 

1.03320 

1.03692 

For a thin rectangle, m 

K 

" tanh nir a/b 

• 0 and (31) reduces to 

5(1 + v) 

6 + 5v 

n 

Fig. 4 Arbitrary thin-walled section 

Fig. 5 Thin-walled tube—I, = irR3t; A = 2irRt; x = R sin 0; y = - /? cos 

Writing x : 

/ = J J x(x + xy2)dxdy 

-ip - xy2, (34) becomes 

I = - ( I x\j/dxdy 

(32) 

(33) 

For m < 0.5 the value of (32) differs little from the Riemann zeta 
function f (5) which has the value 1.03693. For m > 0.5, the sum is 
shown in Table 1. 

(e) Thin-Walled Sections. Cowper [7] outlines the method for 
determining the value of the first integral in the denominator of (21) 
by employing the usual thin wall assumption for a cantilevered thin 
wall section, that shear stress follows the contour of the section and 
is constant across the thickness; shear stress perpendicular to the 
contour is assumed zero. By using standard methods for determining 
the shear stress, the function x may be obtained. For the sake of 
completeness the method is given below. 

We wish to evaluate the integral 

For the thin-wall section, Fig. 4, we have 

T = T'XZ cos 8 + r'yz sin 6 

and noting the expressions for Saint-Venant flexure [11] 

W Idx , vx"1 (2-v) 

W 

: + +. 
2(1+ v)Iy\dx 2 2 

(34) 

(35) 

(36) 

(37) 

dx 
2(l + v)Iy\dy 

+ (2 + v)xy 

gives 

cty_ 2(1 + v)L 

ds W 
- T + - (x2 — y2) cos 6 + v xy sin 8 (38) 

Integration of (38) enables the evaluation of (34). 
The second integral in (21) is best evaluated by noting (22) and 

again assuming the foregoing distribution for T. 
To illustrate the procedure, and simultaneously validify the suit-
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ability of the thin-wall shear stress distribution, we consider the case 
of the thin-walled tube, Pig. 5. 

The shear stress T is given in [12] as 

1.0-

R2W cos 8 
(39) 

from which (37) becomes 

d\l/ vR2 

— = 2(1 + v)R2 cos 8 (cos 20 cos 8 + sin 28 sin 6) (40) 
ds 2 

noting ds = Rdd and integrating with respect to 6 gives 

, R3sm8,, „ , 
\j/ = (4 + 3v) + constant (41) 

and 

(£ txipds = f iR6 sin '4 + Zv\ 
(4 + 3v) d8 = 1 RHt (42) 

we also have T'XZ = r cos 8, r'yz = T sin 6, from which 

• J (cos* 8 - cos2 8 sin2 8)d8 

vARHir 
2IV 

and 

vA 

W 

4/v 

(43) 

I I xyr'yzdxdy = I sin2 8 cos: 

y 

vARHir 

4/v 
(44) 

Substituting into (35) and then into (21) gives K = (1 + y)/(2 + v). 
This is identical to the value of the coefficient for a hollow tube 

using the exact stress function when the wall thickness is small. 

Comparison With Flexural Wave Propagation 
Theories and Experimental Results 

Long wavelength low phase velocity approximations to the exact 
frequency equations for solid circular sections and the plane stress 
thin rectangle can be obtained by expanding in ascending series the 
Bessel and hyperbolic functions, respectively, and appropriately 
truncating higher powers of the small quantities. The phase velocity 
predictions from such a procedure are given in [15] and agreement 
with the Timoshenko equation is found if the values 

K = 6(1 + v)2l(l + \2v + 4v2) 
K = 5(1 + v)/(6 + 5v) 

for the circle 
for the rectangle 

are employed. Since these are the values given by equation (21) it 
seems reasonable to infer that the assumed similitude of stress dis
tribution for the beam performing long wavelength flexural vibration 
and the beam subjected to uniform body force loading is justified. 

Pig. 6 shows the shear coefficient necessary to insure equivalence 
of phase velocity between Timoshenko theory and the theoretical 
predictions [5] for the circular cylindrical shell plotted against a 
thickness/wavelength parameter (H/L). For the solid circle, corre
sponding to H/R = 2, the required coefficient varies only slightly with 
wavelength from the long wavelength value given by (21). For the 
hollow circles (H/R < 2) agreement is good at long wavelength but for 
the tube with thinner walls the required coefficient displays a marked 
reduction in value as wavelength decreases before returning to values 
more comparable with (21) as the ratio of thickness to wavelength 
approaches unity. This reduction would seem to imply a compara
tively large shear deformation for a range of wavelengths, possible 
caused by modal coupling which the approximate theory would be 
unlikely to predict. 

The task of comparing proposed derived values of the coefficient 

%= 2.0 

Fig. 6 Necessary shear coefficient to insure equivalence of phase velocities 
of Timoshenko beam theory and theoretical predictions of Armenakas, Gazis, 
and Hermann for hollow circles; Polsson's ratio v = 0.3 

with experimentally obtained values is made difficult by the too fre
quent lack of complete published data. Thus expression (31) for the 
rectangle is thought to be the first value of the coefficient to vary with 
the aspect ratio of the section, while for many of the experimental 
results published information on sectional dimensions is not given. 
According to Kaneko [1] the most complete experimental data which 
allows the best choice of coefficient is that by Spence and Seldin [13] 
and from this and his own experimental work, Kaneko concludes that 
the foregoing values for the circle and rectangle provide the best 
agreement with experimental results. Since agreement or disagree
ment between theoretical and experimental results is the ultimate 
test, more reliable data in this field would be desirable. 

Discussion and Conclusions 
The present method of obtaining the shear coefficient departs from 

previous derivations in two important ways. First, in place of the more 
usual Saint-Venant flexure stress distribution as the approximation 
to the distribution in a beam performing flexural vibration, we have 
employed the distribution of a beam subjected to uniform body force 
or gravity loading. Thus, while the cross-sectional distribution of the 
shear stresses TXZ and TV2 remains unchanged, they now vary linearly 
with axial coordinate in line with the linearly varying shear force. In 
addition the two direct transverse stresses ax and ay and the shear 
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stress rxy are now nonzero and the longitudinal stress az no longer 
varies linearly through the depth of the beam but is a function of the 
sectional coordinates. From equation (14) it may be seen that the 
moment-curvature relationship for the gravity loaded beam takes into 
account the direct stresses ax and <ry and the sectional variation of 
longitudinal strain; the two additional terms (equation (22)) in the 
denominator of the present coefficient arise from inclusion of the 
direct transverse stresses. 

Second, we have consciously modified the Kennard and Leibowitz 
method by employing an integrated rather than center-line curvature. 
The effect of this modification is to include the complete term ac
counting for the inertia of motion of cross-sectional distortion, or 
lateral contraction inertia, as may be verified by referring to Love [16] 
where an equation is obtained accounting for rotatory inertia and the 
lateral contraction inertia. This latter term is zero for sections pos
sessing "kinetic symmetry," e.g., circular and square sections, since 
it is based on the difference in the principal second moments of area 
of the section. 

It is notable that comparison of behavior of the Timoshenko beam 
with the appropriate coefficient in relation to exact solutions has been 
made solely on the basis of equivalence of phase velocities and since 
it has been remarked by other authors that such agreement does not 
guarantee equivalent agreement for stresses and displacement, on the 
basis of the present work it is reasonable to speculate that pointwise 
stress and displacement of the vibrating beam may be obtained with 
some confidence from the gravity loaded beam. 
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Effect of Transverse Shear and 
Rotatory Inertia on Large Amplitude 
Vibration of Anisotropic Skew Plates 
Part 1—Theory 
A nonlinear vibration theory for anisotropic elastic skew plates is developed with the aid 
of Hamilton's principle. The effects of transverse shear deformation and rotatory inertia 
are included in the analysis. The differential equations formulated here readily reduce 
to the dynamic von Karman-type equations of skew plates when the shear and rotatory 
inertia effects are neglected. Solutions to these equations are presented for various 
boundary conditions in the second part of the paper. 

Introduction 
The dynamic von Karman nonlinear plate theory has been derived 

by Herrmann [1] and generalized to include the effects of the 
transverse shear and rotatory inertia in the theories of orthotropic 
plates by Medwadowski [2] and of anisotropic plates by Ebcioglu [3]. 
Some other nonlinear plate theories [4-7] also take these effects into 
account. A solution to these nonlinear equations with these effects, 
however, cannot be found in the literature. Based on the Berger ap
proach, Wu and Vinson have included the transverse shear defor
mation and rotatory inertia effects in their analyses of isotropic [8] 
and specially orthotropic [9] rectangular plates. An improved version 
of this Berger-type theory has recently been suggested by Sathy
arnoorthy [10] with numerical results reported for specially ortho
tropic rectangular plates. The combined effects of the transverse shear 
deformation and rotatory inertia on the large amplitude vibrations 
of isotropic skew plates have been also discussed by Sathyarnoorthy 
based on the Berger approach [11] and on a generalization of the 
classical von Karman plate theory [12]. A review of literature indicates 
no analysis of anisotropic skew plates is available. The work of Ashton 
[13] neglecting the transverse shear deformation in the linear static 
analysis is the only one known to the authors' best knowledge in the 
elastic behavior of anisotropic skew plates. 

In the first part of the paper, Hamilton's principle and the varia
tional calculus are utilized to derive a system of differential equations 
for the large amplitude flexural vibration of a skew plate in terms of 
forces and moments, lateral displacement and the two so-called slope 

L x,u £ 
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Fig. 1 Geometry and coordinate system of skew plate 

functions. Direct stresses normal to the middle surface of the plate 
are assumed to be of negligible order of magnitude. The plate under 
consideration is made of orthotropic material whose principal axes 
of elasticity are inclined arbitrarily with respect to the plate axes as 
shown in Fig. 1. Airy's stress function and the condition of compati
bility are introduced. These equations are reduced to a system of two 
equations for the lateral displacement and stress function with the 
terms of transverse shear deformation and rotatory inertia separately 
grouped together. In addition these two coupled nonlinear differential 
equations under the present simplifying assumption are solvable. 
Several examples for illustration of these effects on nonlinear flexural 
vibrations of anisotropic skew plates are presented in the second part 
of this paper. 

Equations of Motion 
Consider a skew plate of constant thickness h composed of homo-
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geneous anisotropic material whose coordinate system is shown in Fig. 
1. The origins of the coordinate systems are located at the center of 
the midplane of the undeformed plate. The stress-strain relations for 
the plate may be written as 

a n a12 

012 <J22 

«13 023 

0 0 
0 0 
016 026 

a i 3 

0 2 3 

033 
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0 
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I alternate form as 

M = IMK) 
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0 
0 
04B 
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016 ~ 
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0 
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0 6 6 J 

M «, 

fzf 

Vft> 

(1) 

(2) 

where the coefficients ay- and by are such that Oy = ay; and b;y = 6y,\ 
Since only free vibration is considered here, the normal stress, a2, is 
assumed to be zero. Also, the normal strain is assumed to be zero be
cause of the assumption that w is independent of z[9]. The elastic 
stiffnesses a;y in equation (1) are defined as follows: 

a n = cn/c 3 , ai2 = cns 2 / c 3 + C12/C - 2scie/ci 

ai3 = 0, o16 = cie/c2 - cus/c3 

022 = c c 2 2 + C i 2 S 2 / c - 2SC26 ~ S 2 O l 2 ~ 2sd26 , 023 = 0 

026 = C26 - SC12/C - S 2 016 - 2 s a 6 6 , O33 = 036 = 0 

044 = CC66 — SC56/C — S04B, 045 = CC56 — SC55/C 

055 = c55/c, a66 = C66/c - Ci6s/c2 - sai6, c = cos 0, s = sin 6 (3) 

The coefficients by in equation (2) are defined in Appendix A and 
coefficients c;y in equation (3) are the material constants of the an
isotropic skew plate with reference to the x, y coordinate system. 
These constants may be expressed in terms of the orthotropic prop? 
erties along arbitrary principal directions (L, T) by a coordinate 
transformation as 
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in which EL and ET are the major and minor Young's moduli, VLT and 
VTL are the Poisson's ratios and GLT, GLZ, GTZ are the shear moduli 
and in which 

m = cos 0, n = sin 0, n = 1 — VLTVTL, and VLTET - VTLEL (5) 

In order to take into account the effects of the transverse shear 
deformation and rotatory inertia, the displacement components in 
the oblique coordinates at a distance z away from the midsurface may 
be taken in the following form: 

w(f. V, «, t) = cu°(f, 7), t) + 8V°(t, V, t) + za(f, % t) 

v(t,ti,z,t) = v0([,ii,t) + zP({,V,t) 

w([,V,z,t) = wO({>n,t) = w({,n,t) (6) 

The midsurface strains in terms of the displacement components u°, 
v°, and w may be written as 

«? = cu,0f+su,0f+(u>,f)
2/2 

€? = V% + (W,V)2I2 

4 = c u° + sv°n + u,°f + w,iw,v (7) 

The strains at a distance z measured from the midsurface are assumed 
to be 

6f = £f + Za,z 

••ei + zt 

«z = 0, ef, = e?, + z(a,, + /? f) 

ejs = a + u),f, e„z = j3 + U),„ (8) 

The stress resultants 2V;y and the stress couples My by definition 

X h/2 •» h/2 

<^yd2) M y = J (Ty, 
•fc/2 . J - h / 2 

,zdz 
• h/2 

- / i /2 "' ."' »/-fe/2 

Equations (1) and (8) are substituted into equation (9) and integra
tions are performed to obtain 

(N[ I o u a12 ai6 

} = h 012 O22 026 

_Ol6 026 066_ r 
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The strain energies due to stretching and bending of the plate, 

. N o m e n c l a t u r e . 
2a, 2b = plate dimensions 

D = isotropic plate flexural rigidity Eh3/ 

[12(1 - v2)] 

EL, ET, VLT, VLT ) , ,. ,, . 
„ „ „ } = elastic orthotropic 
GLT, GLZ, ^TZ ) . . . . . 

material constants 
referred to principal 
directions (L, T) 

h = plate thickness 

Nij, Mi\= membrane forces and moments per 

unit width 

Qf> Qv = transverse shear forces per unit 
width 

<7 (f, y) = lateral applied load per unit area of 
the plate 

(1, when rotatory inertia effect is in
cluded 

0, when rotatory inertia effect is not 
included 

1, when transverse shear effect is 
included 

0, when transverse shear effect is not 
included 

Ri 

Ts 

u°, v°, w = midsurface displacement com
ponents along x, y, z- directions, respec
tively 

x, y, z = rectangular Cartesian coordinates 

a, fi - slope functions defined by equation 
(6) 

f, r\ = oblique coordinates 

8 = skew angle 
A = aspect ratio (alb) 
p = mass density 
0 = orientation angle of filaments 
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d e n o t e d by Us a n d [/&, respect ively, a n d t h e kinet ic energy of t h e 

p la t e Uk m a y be expressed in t h e form 

U.-\ff [ a n ( $ 2 + a2 2(«?)2 + a6 6(e?,)2 
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T h e equa t ions of mo t ion a re now der ived from H a m i l t o n ' s pr inc ip le 

by t h e use of equa t ions (12)-(14) . T h e cor responding Eu le r ' s equa 

tions const i tute a system of 13 equations in te rms of membrane forces 

Nf, N „ Nfa m o m e n t s M j , M „ Mf,; t r ansve r se shear forces Qj-, Q, ; 

d i sp l acemen t c o m p o n e n t s u°, v°, w a n d slope funct ions a and /? as 

given below: 
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In these equa t ions t h e so-called t rac ing cons t an t s Ts and Ri are in

t roduced t o identify t h e t e r m s which charac ter ize t h e effects of t h e 

t ransverse shear de format ion and ro t a to ry iner t ia , respectively. 

T h e shear ing forces Qf and Qv a re ob ta ined in t e r m s of a and /? by 

solving equat ions (15)-(19) and t h e n subs t i tu ted in to equat ions (20) 

a n d (21). T h e resul t ing two equa t ions are given b y 

a + wj- T s ( d i a j-f + d2<x, f„ + d3a,„ + dS.n 

+ dBft f„ + d e f t , , ) + RiTs(dncLM + d 8 f t „ ) = 0 (29) 

fi + w,v- Ts(dgaM + d w a f , + d n a „„ + dvS.it 

+ d i 3 f t f , + di4|8 „ ) + RiTs(d15a,tt + d 1 6 / 3„ ) = 0 (30) 

T h e coefficients d i to d16 are defined in Appendix B. Assume t h a t the 

in-p lane iner t ia effects a re negligibly smal l , a n d in t roduce a stress 

funct ion F such t h a t 

Nt=hF,w Ni = hF.s{, Nt„=-hF,t (31) 

W h e n Qf, Qv, N& Nv, and N&, are eliminated from equations (15)-(19) 

a n d (31), equa t ion (27) can be wr i t t en as 

J i + J2(F, w) + J 3 ( « , 13) = 0 (32) 

where 

ZF.ftW,^) J<L = h{FiVVw,j-f + F tjwt„ • 

J 3 = e i a fff + e 2 a f f , + e 3 a , f „ + e 4 a „„„ 

+ e9f l i (« , j i t+ /?,,«) (33) 

T h e coefficients e i - eg are defined in Appendix B. T h e compatibi l i ty 

condi t ion in t e r m s of F m a y now be ob ta ined by solving equa t ions 

(22)-(24) and by use of equa t ion (31). T h e resu l t is 

b2nF,(m ~ 2&26F fff, + (2&12 + b6e)F,nv„ 

- 2b16FSvm + 611.F, , ,„„ = ("),f,)2 " w,iiu),m ( 3 4 ) 

E q u a t i o n s (29), (30), (32), and (34) cons t i t u t e a sys tem of four equa

t ions governing t h e large ampl i t ude flexural vibrat ions of anisotropic 

skew pla tes . T h e effects of t h e t ransverse shea r deformat ion a n d ro

t a to ry iner t ia a re inc luded in these equa t ions . W h e n atj are sui tably 

chosen as ind ica ted in A p p e n d i x D, t hese equa t ions can be shown to 

readily reduce to t h e corresponding equat ions applicable for isotropic 

skew p la tes [12]. 

Equa t ions (29) and (30) are solved s imultaneously for a and f) and 

s u b s t i t u t e d in e q u a t i o n (32) t h e r e b y e l imina t ing a a n d ft f rom the 

governing equa t ions . T h e equa t ion of mo t ion in t h e la tera l d i rec t ion 

of t h e v ibra t ing p l a t e t h u s becomes 

L(J1+J2) + M(w) = 0 

where t h e differential opera to r s L a n d M a re defined as 
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T h e coefficients in equa t ions (36)-(38) are defined in Append ix C. 

E q u a t i o n s (34) a n d (35) governing t h e large a m p l i t u d e v ibra t ions of 

an iso t ropic skew pla tes inc lude t h e effects of the t ransverse shear 

deformation and rota tory inertia in t h e analysis. These equat ions may 

be special ized for var ious cases, 

(a ) No Transverse Shear Effect ( T , = 0, Rt = 1). 

L e t us t a k e Ts = 0 in equa t ions (29) and (30). I t follows t h a t 
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a = —wj, /3 = —witl (39) 

With these expressions for a and fi, equation (32) reduces to 

Ji + Jz-Ji- egRi{w,m + w.mtt) = ° (4°) 

where 

J 4 = ei«),ffj-f + (e2 + eB)i«,j-ff, + (e3 + e6)u>, j-j-,,, 
+ (e4 + e-j)wi{vvv + e$wiVVVV (41) 

Equations (34) and (40) also govern the large amplitude vibration of 
anisotropic skew plates but the transverse shear effect has been ne
glected. These equations, however, include the effect of the rotatory 
inertia. 
(b) No Rotatory Inertia Effect (Ts = 1, Rt = 0) 

The governing equations in this case can.be obtained by putting 
Ri = 0 in equation (32). It follows that 

L(J i + J 2) + N(w) = 0 (42) 

Thus equations (34) and (42) constitute a system of two equations 
governing the large amplitude vibrations of anisotropic skew plates 
including the effect of the transverse shear deformation only. 
(c) Transverse Shear and Rotatory Inertia Effects Both Not In
cluded (Ts = Ri = 0) 

When the effects of the transverse shear deformation and rotatory 
inertia are both neglected in the analysis, equations (29), (30), and 
(32) reduce to 

J i + J 2 - Ji = 0 (43) 

Equations (34) and (43) are the required equations for the large am
plitude flexural vibration of anisotropic skew plates in the sense of 
von Karman. With appropriately simplified coefficients for ay- these 
equations will reduce to those applicable for isotropic and orthotropic 
skew plates and are in agreement with the equations available in lit
erature. 

From the foregoing derivations it is clear that the system of equa
tions (29), (30), (32), and (34) including the effects of the transverse 
shear deformation and rotatory inertia can be used as a basic set from 
which the required set of governing equations for its special cases can 
be easily obtained such that the individual effect of the transverse 
shear deformation or the rotatory inertia on the dynamical behavior 
of isotropic, orthotropic, and anisotropic skew plates can be investi
gated. In a similar manner, if these effects can be neglected in the 
analysis, the basic equations can be simplified correspondingly. The 
present system of equations (29), (30), (32), and (34) and the feasibility 
of reduction of these equations to those for special cases are considered 
as improvements compared to the plate theory available in the liter
ature [8, 9]. 

The system of nonlinear differential equations (34) and (35) is of 
the tenth order. Therefore, five boundary conditions, as against four 
in the classical von Karman plate theory, are required in the present 
theory. The five boundary conditions along each edge consist of three 
corresponding to the out-of-plane conditions of the linear theory (with 
the thickness-shear flexibility taken into account) and two corre
sponding to the in-plane conditions of the nonlinear theory. These 
conditions which are obtained from the variational technique may 
be taken as a combination of the out-of-plane and in-plane condi
tions. 

The out-of-plane conditions are 
I All Edges Simply Supported (SS) 

w = Mr cos 6 = Mrv = 0 at t = ±a 
f f" 5 (44) 

w = M„ cos 8 = Mf, = 0 at 7} = ±6 

II Two Opposite Edges Simply Supported and the Others 
Clamped (SC) 

w = Mr cos 8 = Mt„ = 0 a t f = ± a 
1 (45) 

w = a = ft = 0 at ?j = ±6 

III All Edges Clamped (CC) 

w = a = ft = 0 at f = ±a 

w = a = P = 0 at rj = ±6 (46) 

and the in-plane conditions are 

(a) All Edges Movable (M) 

Pr = Prv = 0 at f = ± o 

Pv = Prv = 0 at 7) = ±b (47) 

where 

Pc=hf-b
F-'ndr'' P" = k X / ' f f d f 

Ph = h f ° F,hdS= h £ * F,r,dV (48) 

(6) All Edges Immovable (IM) 

u° = u ° = 0 a t f = ± a 

u° = v° = 0 at i) = ±b (49) 

Solutions to the system of equations (34) and (35) governing the 
nonlinear flexural vibration of anisotropic skew plates are presented 
for six combinations of boundary conditions (44)-(49) in Part 2. 
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APPENDIX A 
The elements £>;y of the matrix [by] in equation (2) which are equal 

to those of matrix [a;y]-1 are 

fen = (1 - Q12&12 - awaie)/au, &12 = (012 - n^b^lm 

bi6 = mai2/{nin2 - n^n^, b22 = (1 - 012612 _ a26fe26)/Q22 
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&26 = ("4&i2 - ai2)/«i, 644 = 055/715, 645 = (1 - a44644)/a46 

655 = (1 _ 045b45)/a55, 666 = (1 ~ 016&16 ~ 026626)/066 

where 

Ml = Oi6a22 - 026O12, 12 = Ol20i6 - Ou026, 

13 = 026016 ~ 066012, M4 = a\2 -" On022, «6 = 044055 — 045 

APPENDIX B 
The coefficients in equations (29), (30), and (33) are 

dl = d(&65Pl + 645P2), d2 = d(646p3 _ &65P4) 

^3 = d(bSsP5 - bi6pe), d4 = d(66Bp7 + 64sP6) 

ds = d(&55P8 - &45P9), ^6 = d(&65PlO _ &45Pll) 

^7 = 655P12, ^8 = 645P12, dg = d(645Pi + 644P2) 

dio = d(buP3 ~ 645P4), d n = d(biBps - bupe) 

du = d(64Sp7 + b44p&), dw = d(645Ps - 644P9) 

du = d(64Bpio — i>44Pll), dl5 = b44Pi2, di6 = ds 

where 

Pi = 95/611, P2 = bi2°4, P3 = 9s, P4 = 99 

P5 = bisQi, Pe = bi2<}3, Pi ~ 97/611, Ps = Qe/on + P5 

p 9 = 64 + b6, P10 = P2 + P7, P11 = bi2(q2 - <7i), P12 = ph2/10 

9l = 6llb22 ~ 6l2, <?2 = 612666 - 616&26 

93 = 611626 - 612616, 94 = 612626 - 616622 

95 = e + 6f202 - 61261694, 96 = 6 i 699 - 61298 

97 = 612(61293 - 6i69l), 98 = 611C/2 + 6l693 

99 = 61194 + 6i69i, e = 9192 - 9394, d = h2/We 

e1 = #95/611, e2 = #(97/611 + 261294) 

e3 = Hbi2(29i - 92), e4 = -#61293. e6 = #97/611 

e6 = # (9e /6n + 26i29i), e7 = -H(2q9 + 61293) 

e8 = # 9 8 , e9 = -ph3/12 and # = /i3/12e 

APPENDIX C 
The coefficients r; and e,- in equation (36)-(38) are 

ri = d4dg — didi2 

r2 = d2dg + d 4 d n + dsdi4 — didio — dsdi2 — dedi3 

T3 = d2dn — dsdio, r4 = d4di4 + dBd9 — didi3 — dedi2 

rs = d2di4 + d5du — d3di3 - d6dio, re = dsdi6 - d7di5 

r7 = didis + d7di2 — d8d9 - d4di6, 

r$ = dedis + d7di3 — dsdi4 — dsdis 

rg = dsdis + d7dio - dsdn - d2die, rw = di + di2 

r n = d3 + dio, ri2 = d6 + di3, r i 3 = d7 + dis 

eio = e3 + ee, en = e2 + es, ei2 = e4 + e-i 

ei3 = e9fii(di4 - d i + d6 - dio) + 66d7
 — ^2^8 + £3^15 ~ £7di6 

e n = eidis - esdie - egft.d^ 

eis = egfij(d4 - di3 + d9) - eid8 - e6di6 + e2di5 + esd7 

ei6 = e9fli(d8 + d16) 

e n = e9R;(d2 - d6 + d u ) — esdi6 - e3d8 + e4di6 + e7d7 

eis = 68^7 ~~ egRida — e4ds, eig = esdg — eidi2 

e20 = ei(d6 - dio) + e 6 ( d u - di) + e2(d4 - d i 3) 

+ e5(dn - de) - e3di2 + e7dg 

e2i = ei(d4 - di3) + e 6 ( d u - di) + e6d9 - e2d12 

e22 = e\d2 + e§(d\\ — d^) + e2(d5 - dio) ~ esd3 
+ e8dg + e3(d4 - d i 3) - e4d i 2 + e7(di4 - di) 

e23 = e2d2 - e6^3 + es(di4 - di) + e3(d6 - dw) 

+ e4(d4 - d i 3) + e7(dn - d6) 

e24 = 68(dn - d6) + e3d2 - e7d3 + e4(d6 - dio) 

£25 = e4d2 - egd3 

APPENDIX D 
Isotropic and specially orthotropic plates: In the case of specially 

orthotropic plates, 0 = 0 and hence m = 1, n = 0. The corresponding 
a;; are obtained from equations (3)-(5). 

For isotropic plates m = 1, n = 0, and Et = ET = E, VLT = T L -
v, GLT = GLZ = GTZ=G = E/2(l + v),/* = 1 - v2. 
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Effect of Transverse Shear and 
Rotatory Inertia on Large Amplitude 
Vibration of Anisotropic Skew Plates 
Part 2—Numerical Results 

Based on the single-mode analysis, solutions to the governing equations developed in Part 
1 of this paper are presented for various boundary conditions by use of Galerkin's method 
and the Runge-Kutta numerical procedure. Excellent agreement is found between the 
present results and those available for nonlinear bending and large amplitude vibration 
of skew plates. The present results for moderately thick anisotropic skew plates indicate 
significant influences of the transverse shear deformation, orientation angle, skew angle, 
and side ratio on the large amplitude vibration behavior of certain fiber-reinforced com
posite skew plates. 

Introduction 
In nonlinear vibration analysis the system of coupled nonlinear 

differential equations in the sense of von Karman given by Herrmann 
[1] has been commonly used for isotropic plates and extended to 
laminated anisotropic plates by Whitney and Leissa [2]. Approximate 
solutions have been presented by a number of authors for isotropic, 
orthotropic, anisotropic, and laminated plates. For a compendium 
see [3, 4]. Among plates of various geometries, skew plates have re
ceived much less attention due to the complexities involved in the 
formulation of solutions. Kennedy and Ng [5] have applied the per
turbation technique to analyze the large-deflection problem of iso
tropic clamped skew plates under uniform" pressure. Using the 
Galerkin procedure, Nowinski [6] has investigated the nonlinear 
dynamic response of isotropic, skew plates. This study has later been 
extended by Sathyamoorthy and Pandalai [7-9] to include the effects 
of special orthotropy and various in-plane boundary conditions. When 
the principal axes of orthotropy are not parallel to the plate edges, 
the small-deflection analysis of clamped skew plates under uniform 
pressure [13]* indicates that the angle of orientation of the principal 
axes of orthotropy has a significant effect on the behavior of plates. 
In the case of nonlinear bending of anisotropic rectangular plates, 
similar conclusions have been also reached by Prabhakara and Chia 
[10, 11]. In all these solutions the effects of the transverse shear de
formation and rotatory inertia on the elastic behavior of plates have 
been neglected. 
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In this paper, an attempt is made to study the large amplitude 
flexural vibration of homogeneous anisotropic skew plates with ail-
simply supported, clamped-simply supported, and all-clamped edges 
including the effects of the transverse shear deformation and rotatory 
inertia. The in-plane boundary conditions are regarded as all movable 
and all immovable. Solutions to the governing equations are formu
lated on the basis of the single-mode analysis. The resulting time-
differential equations are numerically solved to investigate the effects 
of transverse shear, rotatory inertia, and orientation angle of filaments 
on the nonlinear vibration behavior of elastic anisotropic skew plates. 
These time-differential equations can readily reduce to those of iso
tropic and orthotropic rectangular and skew plates [7-9] when the 
transverse shear and rotatory inertia effects are neglected. The 
present results for the static large deflections of isotropic skew plates 
are in excellent agreement with those of Kennedy and Ng [5]. 

Method of Solution 
The system of equations (34)* and (35)* are coupled and non-linear 

in nature, so exact solutions to these equations are very difficult. 
Approximate solutions are attempted here for the six combinations 
of boundary conditions in equations (44)* to (49)*. In each case a 
single-mode expression for w is chosen to satisfy the appropriate 
boundary conditions as well as the geometrical requirements [5]. The 
assumed mode shapes for the simply supported, simply supported-
clamped and clamped-clamped plates, respectively, are 

cc ut i \ T$ vr) 

ab: w = hfss (T) COS — cos — 
2a 2b 

on h t i \ ""f/i . wr>\ 
&t: w = — fsc(T) COS — 1 1 + cos — 

2 2a\ b I 

CC: w = - fcc(T) 1 + cos ^ 1 (l + cos — (1) 
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in which the mode functions are known to yield reasonably accurate 
results for the fundamental natural frequencies of isotropic and 
orthotropic rectangular plates and of skew plates with small skew 
angles. However, effects of anisotropy and large skew angles may 
decrease the accuracy of the results thus obtained on the basis of these 
mode functions. Although a multimode approach would provide 
better results in such cases, no attempt has been made here to use this 
approach in view of the tedious nature of the titled problem. 

Now expressions (1) are substituted in equation (34)* and solved 
for F. The result is 

SS: F = (/ss)
2 ( A cos — + h cos ^ + gtf + gin2 + gaft) 

\ a b I 

*! -wr) 2irrj 
SC: F = (fsc)

2 \hi cos — + h2cos l-h3cos 

Trf irri . 7rf . TTI? 
+ hi cos — cos h «s sin — sin — + As i f 

a b a b 

+ k2jf + k3fr 

nn n it \2l, ^ . 1 "''J j . ; 2w^., , 2*V 
CC: F = (fee) Ui cos 1- l2 cos 1- (3 cos 1- (4 cos 

\ a b a b 
irf in] Trf 2irv . , 27rf irr) 

+ (5 COS COS 1- !6 COS COS (- (7 COS COS — 
a b a b a b 

. 7rf . 27T7) . 2ir{ . 7T7J . irf . 7T7) 
+(g sin — sin 1- (9 sin sin 1- (10 sin — sin — 

a b a b a b 

+ mif2 + m2V2 + ma^i] (2) 

The coefficients appearing in equation (2) are defined in Appendix 
A. 

Instead of satisfaction of the equation of transverse motion, the 
Galerkin procedure is used in obtaining the time-differential equation 
in each case. 

If the plate edges are supported in such a way that in-plane dis
placements are possible [6], it follows from equations (47)*, (48)*, and 
(2) that g\ = g2 = g3 = k\ = hi = k3 = m\ = m2 = m3 = 0. If the in-
plane movements at the boundaries of the plate are fully prevented 
[7, 8, 9] and given by equations (49)*, the coefficients g;, ki, m,- (i = 
1, 2, 3) appearing in equations (2) may be evaluated by referring to 
equations (10)* and using an integration procedure [12]. The coeffi
cients thus obtained are defined in Appendix A. In view of equations 
(1) and (2), equation (35)* is approximately satisfied by making use 
of Galerkin's method to obtain a nonlinear ordinary differential 
equation for the time function in each case for both movable and 
immovable edges. 

CO A ^f™ J_ A d 4 / s * l j _ d2f»°2 , A t A 
SS: Ai—— + A2—— + ——- + A3fSS3 = A7 

dre dr4 dr2 

d6f,c d*f.ei d2f.C2 

where 

dGfce d4fccl 

CC: Cl—
l^-+C2—~ + 

fssl — fss "r „ , }ss t 
3A2 

dr2 

d2fce2 
+ C3fcl 

••f +—f 
hc 3S 2 

(3) 

(4) 

f + — f 3 

f + — f 3 

ISC ' /SC t 

f +^f 3 
Jss > M Jss > 

A3 

f + — f 3 

lec < n lec 

c3 

A% 
Tss2 ~ Fss "r [ss 

f - f -i- ^6 f 3 Icc2 ~ fee ' fee 

f - t ± B i f 3 IscS ~ [sc ' isc 
£>3 

(4) 
(Cont.) 

fsc2 - fi 

f« 

The coefficients Ai, Bi, and C; (i = 1,2 7) in equations (3) and (4) 
are given in Appendix B. The modal equations (3) have been obtained 
by solving equations (34)* and (35)* which include the effects of the 
tranverse shear deformation and rotatory inertia. If either or both of 
these effects can be neglected, i.e., if Ts = 1, fl; = 0; Ts = 0, Ri = 1; Ts 

= 0 and Ri = 0, then the resulting modal equations reduce to the 
Duffing-type equations as follows: 

d2fsi SS: 

SC: 

CC: 

• + A3fss + A4fss 

d2fs, 

dr2 

d2fc, 

+ B3fsc + Bifsc
i'=B1 

'•+ C3fcc + Cifei 

(5) 

The modal equations (3) are nonlinear ordinary differential 
equations. These equations are solved numerically by the Runge-
Kutta method. Solutions to the nonlinear equations (5) are obtained 
by the elliptic integral method [8]. When the time-dependent terms 
in equations (3) and (5) are omitted, the load-deflection relationship 
in the large deflection regime can readily be obtained. 

Numerical Results and Discussion 
Numerical results are presented for skew and rectangular plates 

composed of boron-epoxy material. The plate material is treated to 
be homogenous and its principal axes of elasticity are inclined arbi
trarily with respect to the rectangular axes x and y as shown in Fig. 
1 of Part 1—Theory. The elastic constants referred to the principal 
directions (L, T) are assumed to be EL/ET = 17.66, I>LT = 0.26, 
GLTIET = GLZ/ET ~ 0.35, and GTz/ET = 0.20. The ratio of the 
nonlinear period T of vibration, including effects of transverse shear 
deformation and rotatory inertia, to the corresponding period To of 
a classical plate, excluding these effects, was computed for anisotropic 
skew plates with various skew angles, plate aspect ratios, orientation 
angles, and thickness-to-span ratios at different nondimensional 
amplitudes. When the transverse shear and/or rotatory inertia effects 
are included, the nonlinear period thus obtained depends upon the 
thickness-to-span ratio r of the plate. For mederately thick plates, 
values of the linear period To were also calculated in terms of r for 
comparison with the corresponding nonlinear period T. It is well 
known that effects of transverse shear deformation and rotatory in
ertia are not included in the nonlinear classical plate theory. Thus the 
resulting period ratio is independent of the thickness-to-span ratio. 
In the numerical integration of equations (3) the nondimensional time 
interval VT was taken as 0.001. 

When the effects of transverse shear deformation and rotatory 
inertia are both neglected, plate equations of transverse motion, and 
numerical results obtained from the present theory for specially 
orthotropic and isotropic skew plates are in exact agreement with 
those presented in [6-9]. In the static case the time-derivative terms 

-Nomenclature. 
A = nondimensional amplitude (w0/h) 

</o = uniformly distributed lateral load per 
unit area of the plate 

r = thickness-to-span ratio 

T = nonlinear period with transverse shear 
and rotatory inertia effects 

To = linear period without transverse shear 
and rotatory inertia effects 

WQ = maximum deflection 

= nondimensional time t{EiJ/pa2)1/2 

= an equation number or reference number 
with a star refers to the corresponding 
number in Part 1. The other notations are 
defined in that part 
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150 180 

Fig. 1 Relation 
plate with X = 1 
conditions (T„ = 

between period ratio and orientation angle for boron-epoxy 
.0, r = 1/20, wa/h = 1.5, 0 = 30°, and different boundary 
Ri = D 

SS(M) 
SC(M) 
CC(M) 

9 0 I 2 0 
IN DEGREES 

Fig. 2 Variation of period ratio with orientation angle for boron-epoxy plate 
at X = 1.0, w0/h = 1.5,6 = 30°, and different boundary conditions (Ts = R/ 
= 0) 

in equations (5) disappear and the resulting nonlinear algebraic 
equations yield an approximate relation between the nondimensional 
load qob4/Dh and the nondimensional central deflection u>o/h of 
isotropic skew plates in the large-deflection regime. The numerical 
results thus obtained for clamped-clamped isotropic rhombus plate 
(8 = 30°), skew plate (X = 1.5,6 = 30°) and square plate are found to 
be in very close agreement with those given by Kennedy and Ng [5], 
but the details are not presented herein. For the vibration problem, 
the natural (linear) frequencies of vibration for various plate pa
rameters and boundary conditions, which do not include the 
transverse shear deformation and rotatory inertia effects, can be 
readily obtained from equations (5) by dropping the nonlinear terms 
and solving the resulting equations. The numerical results for the 
natural frequencies thus obtained agree well with those given in 
[13]. 

However, the present results, when specialized for rectangular 
plates with simply supported edges do not agree with those available 
in [8,9]* where the effects of transverse shear and rotatory inertia are 
included in the analysis. A comparison made elsewhere [14] for a 
similar problem indicates that the results presented in [8,9]* over
estimate the period ratio at large amplitudes of vibration. The dis
crepancy between present results and those in [8,9]* may arise mainly 
from the following reasons. In [8,9]* the expression for each of slope 
functions a and /3 is assumed to be a one-term approximation instead 
of a general form. As shown in [15] a one-term approximation for in-
plane displacements can differ considerably from the true solution 
for a given w. The result may also apply to the case [8, 9]*. In the 
present approach a and fi are eliminated from the governing equations 
and, therefore no particular forms for a and fi are assumed. It has been 
shown on several occasions [12, 14] that the Berger approximation 
overestimates period ratios. The error involved in using this ap
proximation increases with increasing degree of orthotropy of the 
plate material. In the present analysis the governing equations are 
a generalization of dynamic von Karnian-type plate equations. 
Furthermore, the effect of rotatory inertia has been neglected in [8, 
9] * whereas this effect is accounted for in the present analysis. Ne
glecting this effect may also introduce a small error in the numerical 
results. 

The period ratio is plotted in Figs. 1 and 2 against the orientation 
angle <t> for a 30° skew plate at the nondimensional amplitude and 
aspect ratio equal to 1.5 and 1.0, respectively. The results presented 
in Fig. 1 include the effects of transverse shear deformation and ro
tatory inertia whereas these effects are neglected in the results of Fig. 
2. It is clear that the period ratio changes significantly with the or
ientation angle irrespective of whether these effects are taken into 
account. A comparison of Figs. 1 and 2 shows that neglecting these 
effects in the vibration analysis leads to a substantial reduction in the 
numerical values of the period ratio. It is also observed that for a given 

90 120 
IN DEGREES 

Fig. 3 Relation between period ratio and orientation angle for simply sup
ported Immovable boron-epoxy plate with X = 1.0, w„/h = 1.5,6 = 30°, and 
various values of thickness-to-span ratio (T, = Rt = 1 and T, = Rt = 0) 

value of 0 the period ratio for a plate with movable edges is greater 
than that for a corresponding plate with immovable edges. This trend 
is in agreement with that reported in literature for isotropic and 
specially orthotropic rectantular and skew plates [8,9,16,17]. For all 
the combinations of boundary conditions considered here the period 
ratio is found to be minimum at <j> equal to 30° for a 30° rhombus 
plate. A similar phenomenon also occurs for all skew plates with X = 
1 when the angle of orientation is equal to the skew angle of the plate. 
These points are of considerable importance for design purposes. In 
the case of an anisotropic rectangular plate (6 = 0) the curves in Fig. 
2 will be symmetric about the line (j> = 90° [18] whereas no such 
symmetry exists for a skew plate. 

The variation of the plate thickness with the period ratio is shown 
in Fig. 3. The effects of transverse shear and rotatory inertia are in
cluded. For comparison the variation of period ratio with </> is also 
shown by neglecting these effects. In general the period ratio decreases 
as the thickness of the plate decreases. It is seen that the influence 
of transverse shear deformation and rotatory inertia on the period 
ratio is very significant for specially orthotropic (<t> = 0) and aniso
tropic (110° < 0 < 180°) moderately thick plates. All the curves in 
Figs. 1-3 are repeated after <t> = 180. 

In Figs. 4 and 5 the variation of the period ratio with the plate skew 
angle is shown for an anisotropic plate (0 = 30°) at amplitude equal 
to 1.0 with six combinations of boundary conditions. In Fig. 4 the 
transverse shear and rotatory inertia effects are included but in Fig. 
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SC(M) 

CC(IM) 

Fig. 4 Variation of period ratio with skew angle (or boron-epoxy plate having 
X = 1.0, w0/h = 1.0, r = 1/20, <j> = 30°, and different boundary conditions 
<rs = /?,= 1) 

SS(M) 

CC(IM) 

SC(IM) 
SS(IM) 

Fig. 6 Variation of period ratio with aspact ratio for boron-epoxy plate at 8 
= 45°, $ = 30°, /• = 1/20, w0/h = 1.0, and different boundary conditions (T, 
= H, = 1) 

Fig. 5 Relation between period ratio and skew angle for boron-epoxy plate 
with X = 1.0, w0/h = 1.0, <t> = 30°, and different boundary conditions (7", = 
R,= 0) 

SS( IM) 

Fig. 7 Relation between period ratio and thickness-to-span ratio for 
boron-epoxy plate with X = 1.0,4> = 40°, w0/h = 1.0,8 = 45°, and different 
boundary conditions 

5 these effects are neglected. A comparison indicates that the quali
tative nature of these two sets of curves is the same although quan
titatively the period ratio in Fig. 4 is higher than the corresponding 
period ratio in Fig. 5. This ratio generally decreases slowly with an 
increase in the skew angle of the plate and reaches a minimum value 
at the skew angle 6 = 30° since the orientation angle is also 30 deg. By 
suitably varying the skew angle of the plate and the orientation angle 
of the filaments, it is possible to limit the period or frequency ratio 
to any desired value. 

The period ratio is plotted in Fig. 6 against the plate aspect ratio 
for a 45° skew plate at the amplitude equal to unity and 0 = 30° by 
taking account of the transverse shear and rotatory inertia effects. 
It can be seen that the plate aspect ratio has a considerable effect on 
the vibration behavior of skew plates. While no specific pattern of 
behavior is found, it is observed that boundary conditions determine 
the qualitative nature of the variation of the period ratio with the 
aspect ratio of the plate. A simply supported skew plate with movable 
boundaries is the one least affected with the variation in the aspect 
ratio. 

The effect of the thickness-to-span ratio on vibration of a rhombus 
plate with 6 = 45° at unit nondimensional amplitude and orientation 
angle equal to 40° is illustrated in Fig. 7. The horizontal lines represent 
the variation of period ratio with r for various boundary conditions 
when the effects of the transverse shear and rotatory inertia are ne
glected. They indicate that the period ratios in the case are inde
pendent of the thickness-to-span ratio for thin plates. However, those 

SC(M) 
CC(M) 
SS(M) 

CC(IM) 
SC(IM) 

SS(IM) 

2.0 

Fig. 8 Amplitude-period response curves for boron-epoxy plate with 0 - 30° 
X = 1.5, 0 = 30°, r = 1/10, and different boundary conditions (Ts = 
« / = 1 ) 

effects are very important for moderately thick plates. As the thick
ness of the plate decreases, the period ratio decreases due to the de
creasing influences of transverse shear and rotatory inertia and 
reaches asymptotically a value corresponding to the period of a clas
sical thin plate. Thus each horizontal line is an asymptote to the 
corresponding curve in Fig. 7. 

The period-amplitude response curves are shown in Figs. 8 and 9 
for a 30° skew plate with X = 1.5 and orientation angle at 30°. The 
effects of the transverse shear and rotatory inertia are included in Fig. 
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8 

2.0 

Fig. 9 Variation of period ratio with amplitude for boron-epoxy plate with 
6 = 30°, X = 1.5, <f> = 30°, and different boundary conditions (Ts = 
B/ = 0) 

2.0 

Fig. 10 Amplitude-period response curves for clamped-clamped immovable 
boron-epoxy plate with 6 = 45°, X = 1.0, 0 = 30°, and various values of 
thickness-to-span ratio (Ts = 1, H, = 0 and Ts = R, = 0) 

8 but neglected in Fig. 9. For all the boundary conditions considered 
here, the period decreases with increasing amplitude of vibration 
thereby exhibiting the hardening type of nonlinearity. The period-
amplitude curves in Fig. 8 for six combinations of boundary conditions 
considered here are seen to cross over one another only when the 
transverse shear and rotatory inertia effects are included in the 
analysis. For a plate with any set of the boundary conditions consid
ered here, the period ratio at a given amplitude in Fig. 9 is less than 
the corresponding value in Fig. 8. This is due to the absence of the 
effects of transverse shear and rotatory inertia in the curves of Fig. 
9. 

The curves shown in Fig. 10 take into account only the effect of the 
transverse shear deformation and those of Fig. 11 include the effect 
of the rotatory inertia only. It is evident from a comparison of these 
two sets of curves that the effect of the transverse shear deformation 
is more significnat than the effect of the rotatory inertia, especially 
for large values of r (or thick plates). Either of these effects increases 
the period ratio at any amplitude of vibration. It is also seen that for 
the thickness-to-span ratio of the plate below a value equal to 1/20, 
the rotatory inertia has little influence on the vibration behavior of 
the plate. 

Concluding Remarks 
The dynamic von Karman nonlinear plate theory is generalized to 

include the effects of the transverse shear and rotatory inertia in the 
analysis of anisotropic skew plates. The theory is formulated in a form 
such that these effects can be investigated individually or totally and 
that the resulting differential equations are solvable. The present 
results are in good agreement with several existing solutions for the 
static and dynamic problems of isotropic and specially orthotropic 
skew plates in the absence of these effects and can reduce to a recent 
solution for an isotropic skew plate including these effects. Approx-

,x = 1/10 

' 1 / 3 0 ^ 

-NO Ts ,Ri 

0.5 1.0 
A 

1.5 2.0 

Fig. 11 Amplitude-period response curves for clamped-clamped immovable 
boron-epoxy plate with 0 = 45°, X = 1.0, <j> = 30°, and various values of 
thickness-to-span ratio (Ts = 0, fl; = 1 and Ts = /?; = 0) 

imate solutions with numerical results for nonlinear flexural vibra
tions of anisotropic skew plates of boron-epoxy composites are pre
sented for six sets of boundary conditions. 

Based on the present results it may be possible to draw some con
clusions regarding the dynamic behavior of generally and specially 
orthotropic skew plates. The effects of the transverse shear and ro
tatory inertia on the period decrease as the amplitude increases. They 
generally become less significant at the amplitude twice the plate 
thickness. These effects also decrease with decreasing the ratio of the 
thickness to span and, in general, are not significant for thickness-
to-span ratios less than 1/30. The effect of the rotatory inertia on the 
period is much less than that of the transverse shear and can be ne
glected in the vibration analysis. The period of vibration of the plate 
generally is considerably influenced by the orientation angle. At 
certain angles of orientation the period ratio varies more than 30 
percent for the numerical results presented in this work. The period 
ratio also varies significantly with the skew angle. Therefore, the 
elastic behavior of anisotropic skew plates is not so easily predicted 
as for the simple shapes of homogeneous plates. 

Acknowledgment 
The results presented in this paper were obtained in the course of 

research sponsored by the National Sciences and Engineering Re
search Council of Canada. 

References 
1 Herrmann, G., "Influence of Large Amplitudes on Flexural Motions of 

Elastic Plates," National Advisory Committee for Aeronautics, Technical Note 
3578, Washington, D.C., May 1955. 

2 Whitney, J. M., and Leissa, A. W., "Analysis of Heterogeneous Aniso
tropic Plates," ASME JOURNAL OF APPLIED MECHANICS, Vol. 36,1969, pp. 
261-266. 

3 Sathyammorthy, M., and Pandalai, K. A. V., "Large Amplitude Vibra
tions of Certain Deformable Bodies: Part 2-Plates and Shells," Journal of 
Aeronautical Society of India, Vol. 25,1973, pp. 1-10. 

4 Chia, C. Y., Nonlinear Analysis of Plates, McGraw-Hill, New York, 
1980. 

5 Kennedy, J. B., and Ng, S., "Linear and Nonlinear Analyses of Skewed 
Plates," ASME JOURNAL OF APPLIED MECHANICS, Vol. 34,1967, pp. 271-
277. 

6 Nowinski, J. L., "Large Amplitude Oscillations of Oblique Panels With 
an Initial Curvature," AIAA Journal, Vol. 2,1964, pp. 1025-1031. 

7 Sathyamoorthy, M., and Pandalai, K. A. V., "Nonlinear Flexural Vi
bration of Orthotropic Skew Plates," Journal of Sound and Vibration, Vol. 
24,1972, pp. 115-120. 

8 Sathyamoorthy, M., and Pandalai, K. A. V., "Nonlinear Vibration of 
Elastic Skew Plates Exhibiting Rectilinear Orthotropy," Journal of The 
Franklin Institute, Vol. 296, No. 5,1973, pp. 359-369. 

9 Sathyamoorthy, M., and Pandalai, K. A. V., "Large Amplitude Flexural 
Vibration of Simply Supported Skew Plates," AIAA Journal, Vol. 11, 1973, 
pp. 1279-1282. 

10 Prabhakara, M. K., and Chia, C. Y., "Postbuckling of Angle-Ply and 
Anisotropic Plates," Ingenieur-Archiu, Vol. 45,1976, pp. 131-140. 

11 Prabhakara, M. K., and Chia, C. Y., "Nonlinear Bending of Symmetri
cally Laminated and Homogeneous Anisotropic Plates," Rozprawy Inzynier-
skie, Vol. 24,' 1977, pp. 559-570. 

Journal of Applied Mechanics MARCH 1980, VOL. 47 / 137 

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



12 Sathyamoorthy, M., "Nonlinear Vibration of Rectangular Plates," 
Journal of Sound and Vibration, Vol. 58,1978, pp. 301-304. 

13 Leissa, A. W., "Vibration of Plates," NASA SP-160, 1969. 
14 Sathyamoorthy, M., "Effects of Large Amplitude, Shear and Rotatory 

Inertia on Vibration of Rectangular Plates," Journal of Sound and Vibration, 
Vol. 63,1979, pp. 161-167. 

15 Vendha'm, C. P., and Das, Y. C, "Application of Rayleigh-Ritz and 
Galerkin Methods to Nonlinear Vibration of Plates," Journal of Sound and 
Vibration, Vol. 39,1975, pp. 147-154. 

16 Yamaki, N., "Influence of Large Amplitudes on Flexural Vibrations of 
Elastic Plates," ZAMM, Vol. 14,1961, pp. 501-510. 

17 Sathyamoorthy, M., "Nonlinear Vibration of Rectangular Plates," 
ASME JOURNAL OP APPLIED MECHANICS, Vol. 46,1979, pp. 215-217. 

18 Chia, C. Y., and Sathyamoorthy, M., "Nonlinear Vibration of Anisotropic 
Skew Plates," Fiber Science and Technology, 1979, in press. 

APPENDIX A 
The coefficients in equations (2) are 

h = AoDJb2% h = AaDJbuW gl = 4D2(D4 - D3\
2)/3g4 

g2 = (4D2\
2/3 - DsgJ/Di, g3 = -2(b1Bg2 + 626£i)/666 

hi = fi, h2 = f2, h3 = h2/16, hi = AnDJgs 

hb = -AoD7/g5, Ki = (DJ)2 - D3d8\
2)/g4 

k2 = (D8X
2 - KiD5)/Di, Ks = -2(616*2 + b26kt)/b6e 

li = Da/2, l2 = h/Dw\\ l3 = h/16, U = l2/16 

h = DgD10/D12, l6 = D9Die/2D18, l7 = D9D13/2Dlb 

h = D9D17/2D18, lg = D9Du/2D15, l10 = DgDn/D12 

mi = D2(D4~D3\
2)/g4, m2=(D2\

2-miDb)/D4 

m3 = -2 (6 i 6 m 2 + b26m{)lb&, 

where 

AQ = -h2Tr4/32a2b2, Dx = (O/TT)4, D2 = 3/i27r7l28a2 

D3 = 2(bn - bie2/b66), D4 = 2(b12 - b16b26/bB6) 

DB = 2(622 - 626
2/666), D6 = [622 + (26I2 + 666)X

2 + 6nX4]/Di 

£ 7 = 2 A ( 6 2 6 + 6i6A
2)/£>1, D8 = 4D2/3, D 9 = -/i2X2 /1662 2 

Bio = 1 + D20\
2 + D19\

4, Dn = MD21 + K22X2) 

D12 = D102 - D n
2 , D1 3 = 16 + 4£>2DX2 + #1 9X4 

Du = 2X(4Z321 + D22X2), Dlb = Dl3
2 - Du

2 

Die = 1 + 4D20A2 + I6D19X4, D17 = 2X(/J21 + 4D22\
2) 

DIB = DtB
2 - D17

2, Dis = 611/622, D20 = (2612 + 666)/622 

D2i = -26 2 6 /6 2 2 , D22 = -26 1 6 /6 2 2 , g4 = D4
2-D3Db 

gb = De
2-D7

2 

APPENDIX B 
The coefficients appearing in equations (3) and (4) are 

At = 10r4Si/S2 , A2=4r2S3/S2, A3 = S4/S2 

A4 = Sb/S2, Ab = 4r?Se/S2, A6 = S7/S2 

A7 = 4cq0/ir
2r2S2EL, Br = 64r6S9/S8, B2 = 16r4S1 0/S8 

B3 = Sn/S8, B4 = S12/S8l Bb = 48r4S1 3 /S8 

B6 = 12r2Su/S8, B7 = 8cq0/wSaEL, d = 64r6S1 6 /S1 5 

C2 = 16r4S I 7 /S1 5 , C3 = Si8/SiB , C4 = St9/Slb 

Cb = 48r4S2o/Si6, C0 = 12r2S21/S16, C7 = 4cq0/SlbEL 

where 

Si = -crtE^/pW 

52 = -ctx + — [;2(ei4 + ei3X2 + ei8X
4) - egRiK.1 + X2)] 

ph 
53 = EL[cph(r7l + r9/X2 + 7"i3) - e9Ril(dlb + d7\

2)]/p2h3 

54 = a2[/2(ex + e10X
2 + e8X

4) - l\ew + e20X
2 

+ e23X
4 + e2b\

e)]/ELh 

Sb = a2[t!t2 + 2hXg3t3l]/ELh, S6 = 3r6t2ELlp2hi 

57 = -3\t2(r7l + r9l\
2 + n 3 ) + 2hlg3rsl\

2]/ph 

5 8 = 4r2[cph2{3 + l(3r10 + 4X 2 m) - l2(3n + 4X2r2] 

+ 16X4r3))/2 + ^ j / 2 (3e u + 4X2ei3 + 16X4ei8) 

-egRil(3 + 4\2)}/2}/ph2 

cph2 

S 9 = - 3 c r 6 E L
2 / 2 p 2 h 4 , S1 0 = JSL 

- e9lhRi(3dlb + 4X2d7)/2 

2 

/ p % 4 

(3lr7 + 3r13 + 4\Hr9) 

511 = - [J2(3ei + 4X2cio + 16X4e8) - i3(3ei9 + 4X2e20 + 16X4e23 

+ 64X6e25)]/SL. 

512 = 2l2h2[l2(n + 4\l2r2 + 16X4r3) - (1 + rwl + 4X2 / r„) t3 

+ 2XKri2 - r4l - 9,\Hrb)t4 + 2(nl2 - rwl - \)tb]/Eh 

S 1 3 = 2 i 2 r 6 f i L [ t 3 + 2 t B ] / p % 2 

S14 = 2l2h[2Xlr8t4/h - t3(r13 + r7l + 4\2r9l/h)]/p 

SIB = 4r2[tt{4/(3ei4 + X2e i 3 + 3X4ei8) - 3egRi(l + X2)| 

- cp/i2(16(2(3n + r2X
2 + 3r3X

4) - 12Hr10 + rnX2) - 9)/4]/ 
ph2 

Sle=-dcreEL
2/4P

2h< 

S17 = -EL[3lhRieg(dlb + d7l
2) - cph2(9r13 + \2lr7 

+ 12X2/r9)/4]/p2/i4 

Sis = lh[4l(3ei + X2ei0 + 3X4e8) - 16i2(3ei9 + X2e20 

+ X4e23 + 3\ee2b]/EL 

Sw = ^4[{16/2(ri + X2r2 + X4r4) - 4/(r10 + X 2m) - l}t4 + 
4\lt7(ri2 

- 4r4l - 4\2lrb) + 2t6(16i2n - 4/ri0 - 1) + 2t6(16X4Pr3 

- 4X2Zru - l ) ] /4Ei 

520 = r6(t4 + 2tb + 2t6)EL/4p2 

521 = h2[-4lr7(t4 + 2tb) + 4Xlr8t7 - 4\2lr9(t4 + 2£6) 

- n3(t4 + 2tb + 2i6)]/4p 

The t 's in the foregoing expressions are given by 

h + IHn + r2X2 + r3X
4) - l(r10 + r„X2) - 1 

i2 = 2 « [ ; X 2 ( / 1 + / 2 ) - ( g 2 + £ 1 X 2 ) ] 

t3 = X2(h2 + 2h3 + h4/2 + 2/i 1 - 8£ia2/7r2) - 2k2a
2/ir2 

t4 = 16/2X2[/i + l2 + l3 + 2l4 + (l6 + l7)/2]h2 - 8l(m2 + miX2)A2 

tb = Sl2\2(l2 + lb + l7l2)lh2 - 8lm2Jh2 

t6 = 8J2X2(/i + l6 + le/2)h2 - 8l\2
mi/h

2 

t7 = 8Z2A2(Z8 + l9)/h
2 - 8l\m3/h

2, I = 7r2/4a2 

The coefficients Au B;, C; (i = 1, 2 . . . 7) for plates with movable 
boundaries may be readily obtained by taking gi, ft;, mi (i = 1, 2, 3) 
to be zero in these expressions. 
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The Dynamically Loaded Circular 
Beam on an Elastic Foundation 
In this investigation an analytical treatment for the determination of the natural 
frequencies of a circular uniform beam on an elastic foundation, subjected to harmonic 
loads, is presented. This problem in the most general case of response is reduced to a sys
tem of six-coupled linear partial differential equations. The effects of rotatory inertia and 
transverse shear deformation are also included in the analysis. The problem is treated 
by considering the beam as a continuous system, as well as a discrete system. The afore
mentioned solution methodology is successfully demonstrated through several numerical 
examples. 

I n t r o d u c t i o n 
Considerable attention has been given to the linear elastic analysis 

of beams under dynamic harmonic loads by many investigators. In 
references [1-8] the dynamic response of beams is examined using 
mainly Timoshenko's beam theory. In the simple case of straight 
beams it has been already shown that the effect of rotatory inertia and 
shear deformation on the natural frequencies is about 1.7 percent. 
Moreover, in references [3, 10, 11] the influence of damping on the 
natural frequencies is examined in special cases of beams. Finally, in 
references [12,13] an approximate solution for a cantilever beam and 
a Plexus frame is given, by considering both systems as discrete. 

The response of a straight beam on an elastic foundation under 
harmonic loads is investigated in references [1, 2], in which the effects 
of rotatory inertia and shear deformation are taken into account. 
Moreover, the static analysis of a circular beam on an elastic foun
dation has been studied in references [14-17]. 

The present investigation refers to the problem of linear dynamic 
analysis of a circular beam of uniform cross section on an elastic 
foundation in the most general case of response. The effects of rota
tory inertia and transverse shear deformation are included in the 
analysis. This problem is reduced to a system of six partial differential 
equations. After an appropriate analytical treatment, the aforegoing 
system has been uncoupled and a closed-form solution for the de
termination of natural frequencies is obtained. Finally, using the 
methodology of references [12,13,18], a closed-form solution of the 
aforementioned problem is given, by assuming that the continuous 

Contributed by the Applied Mechanics Division and presented at the Winter 
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system is replaced by an equivalent of—n—concentrated masses. 
The solution developed herein is successfully demonstrated through 
several numerical examples. 

M a t h e m a t i c a l F o r m u l a t i o n and So lu t ion T e c h n i q u e 
Consider a circular beam of uniform cross section lying on an elastic 

foundation and subjected to a harmonic motion due to a continuous 
vertical load q(s,t) = q(s)el"t;s is the arc of the beam and t the time. 
The acting forces on the elementary arc ds = Rdip are indicated in Fig. 
1. If y denotes the transverse deflection and 6 the angle of twist of the 
cross section, the elastic reactions of the soil are q = ey and m* = e*8; 
where e = eb and e* = ebs/12. In addition e is the coefficient of 
subgrade reaction and b the width of the cross section of the beam. 

The differential equations (in terms of internal force and moments, 
rotations and deflection) governing the equilibrium of an arc (Fig. 1) 
are given by 

(la) 

and 

where 

dip dt2 

— = M - e*R8 
dtp 

^ = -kRM - 6 
dip 

dd 
— = -kiiRD + f 
dip 

dv 
— = R*p + yRQ 
dip 

1 EI Ie 

EI " GId g 

* 
_J3_ 
" GF 

(lb) 

(2) 
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Jf,A 

D + dD 

• y + dy 

Fig. 1 (a, b) Geometry and sign convention 

In the aforementioned relations Q, M, and D denote the shear force, 
bending moment and twisting moment of the cross section, respec
tively; \p is the slope of the deflection curve due only to bending; E and 
G are the Young's and the shear modulus of elasticity, respectively; 
F is the cross-section area; / represents the moment of inertia of the 
cross section with respect to the xi-axis, while Id the torsional moment 
of inertia of the cross section; m is the distributed mass per unit 
length. Finally, e is the specific^weight of the material of the beam, g 
the gravity acceleration, and /3 a^numerical coefficient depending 
on theshape of the cross section (ft= 1.2 for a rectangular shape and 
max $ = 2.4 for a / cross section). 

It should be noticed that through a simple manipulation of equa
tions (la) and (16) the corresponding equations of the static problem 
can be derived [14-17]. Moreover, by setting e = e* = y = 0 into 
equations (la) and (16) one may obtain the equations (1) and (2) of 
reference [19]. 

After a cumbersome manipulation of equations ( la) and (16), one 
may decouple these equations and obtain the following partial dif
ferential equation for the deflection: 

c>6y , . £>4y , , a 2 y , . ^ . a 4 y 
— : + A1 + A2 1- A3y + A4 —-
dip6 dip4 • dip2 dip2dt2 

d4v d6v d4v d2y 
+ Ab—r— + A6 — + A 7 — - + A 8 — = A9 (3) 

d ^ 2 d t 2 dip2dt4 dt4 d t 2 

where the constant coefficients At (i = 1,. . . , 9) are given in the Ap
pendix. 

For a free vibration we may assume a solution for the homogeneous 
differential equation corresponding to equation (3) of the form: 

y(s,t) = Y(s)ei"*t (4) 

Introducing relation (4) in the foregoing homogeneous differential 
equation the, following ordinary differential equation of sixth order 
is obtained: 

d6Y „ d4Y d2Y „ _ 
— - + F*x — - + F*2 — - + F*SY = 0 
dip6 dip4 dip2 (5) 

where 

F*i = (2 - iiv) + re!2 + re2
2 

F*2 = (v + p + 1 - n2) - /x(l + v)ni2 + (2 - ixv)n2
2 + m2 • n2

2 

F*3 = - | M ( 1 + v){p - re2) - (1 + v)n2
2 + m2n2

2} 

p = keR4, v = keb2R2/12 (6) 

re2 = kmR4o>*2 

rei2 = ky*R2w*2 

n2
2 = yRHmu*2 - e) (7) 

The two last equations include the influences of rotatory inertia 
and shear deformation. 

It is worth noticing that for a rectangular cross section of depth h 
for which R » 0.45n it can be shown that re2 » rei2, ni2 

In effect 

re2 = kmR4w*2 » rei2 = ky*R2u*2 =*R2»I/F=*R» 0.3re 

and 

re2 = kmR4w*2 » yR2moi*2 > n2
2 

• yR2\ntdi* > R » 0.45/i 

The characteristic equation of the homogeneous differential 
equation (5) 

r 6 + - F V 4 + F*2r
2 + F*3 = 0 

using the transformation 

r2 = z _ ^ * x / 3 

leads to the following algebraic equation of Cardan's form: 

z 3 + I I z - u = 0 

(8) 

where 

n = F*2 - F*t
2/3 

v = (-2/27) F*is + (1/3)F*tF*2 ~ F*3 

(9) 

(10) 

It is known that the nature of the roots of equation (9) depends on 
the signs of the coefficients II, v as well from the sign of the discriminal 
r = vVA + IP/27. 

Clearly the sign of these expressions is dependent on the values of 
the geometric and elastic characteristics of the beam, as well as on its 
natural frequencies. 

There are, in general, three characteristic cases: 

Case a: II < 0, v < 0, r > 0 which imply one root negative and two 
roots complex conjugates. 

Case b: II > 0, v > 0, r > 0 which imply one root positive and two 
roots complex conjugates. 

Case c: T < 0, v < 0 which imply three real roots (one positive and 
two negatives). 

All the roots corresponding to the foregoing cases are given in the 
Appendix. 

The general integral of the homogeneous differential equation of 
equation (3) can be written under the form 

y(f,t) •• EC;** 
;=i 

(11) 
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where c; are integration constants which are defined from the 
boundary conditions and the functions <£; have the following ex
pressions: 

Case a: $1 = sin r\tp, $2 = cos ryp, $3 = sin huip cos \ip, 

$4 = cosh uip cos Xip, $5 = sinh uip sin Xip, 

$6 = cosh uip sin X̂ >; (12) 

where r\, u, X are computed from relation (32) given in the Ap
pendix. 

Case b: $1 = sinh r\ip, $2 = cosh r\ip (13) 

The functions $3, $4, $5, $6 have the same expressions as in Case 
a and r\, u, X are computed from relations (32) given in the Ap
pendix. 

Case c: $1 = sinh ri<p, $2 = cosh rup, $3 = sin Xip, 

$4 = cos Xip, $5 = sin uip, $6 = cos uip; (14) 

where r\, X, u are computed from relations (33) given in the Ap
pendix. 

After the determination of the deflection y (ip,t), the internal forces 
(M,D,Q) and rotations (\p,d) can be established through equations (la) 
and (16) as follows: 

D 
0fl 

R 
d4y d2y 

ki—- + k2-—- + ksy 
dip* dip1 

[ad-kd-^jk,^-
dipb 

+ \(ah2 - 1)(1 - k4) - frkM ^ 
dip3 

+ [(ak3 - 1)(1 - k4) - Pk3k4 + (u - 1 n i 2 « 2 2 -
dip 

yR 

d*y d3y 
(a + P)ki - ~ + [(a + 0)kt - 1] - ^ 

dip dips 

,dy 
+ [(a + 0)fe3 - l - n 2

2 + M^i2] —-
dip 

f R 

d*y 
(a + 0 ) f c i — i + [ ( « + 0 ) f c 2 - l ] 

dip d<p3 

hi 
+ [(a + 0)fe3 - 1 - "22 + M"i2) 

d4y d2y 

dip4 dip2 

dy 

J rf<p 

(15) 

where 

kt = l/kR(l + M)(1 + </) 

fe2 = kill - v(l + n) + n2
2\ 

k3 = ki\p - n2 + ni2n2
2} 

ki = -y/\$R(l - yy*03*2) - y) 

a = -kR 

0 = -kixR (16) 

Relations (15) may be rewritten under the form of two matrix 
equations as follows: 

T^ip.t) = AMCe'-'t (17) 

T2(<P,t) = B^Ce™'* (17a) 

where 

Ti = \ytB}T, T2=\MDQ)T 

C = |Ci, C2, C3, C4, C5, C6JT 

4 = [a;,], B =[&; ] . (i = 1,2,3; j = 1,2,...,6) (18) 

(The superscript " T " indicates the transpose of the matrix). 
The elements of matrices A and B have the following expressions 

for each of the foregoing cases: 

Case a: a n = sin r\tp, a\2 = cos r\ip, 0:13 = sinh uip cos \<p, 

an = cosh utp cos X<p, 0:15 = sinh uip sin X<p, 

ai6 = cosh uip sin \ip, a2i = ao<xi2, ^22 = - a o a n , 

"23 = do«14 + /oa i5 , «24 = ^0^13 + /o«16, «25 = d 0 a 1 6 ~ /o«13, 

a26 = d0ai5 - /o«i4, «3i = a i a n , "32 = <uai2, 

«33 = diaw + fiane, a34 = diai4 + A«is, «35 = di«i6 - M14, 

a36 = dia ie - / i a i 3 ; 

0 n = a 2 a n , 0i2 = a2ai2, /S13 = d2«i3 + /2«i6i 

/Sl4 = ^2«14 + /2«15, /?15 = d 2 a i 5 ~ /2«14> 

016 = d2<*16 _ /2«13i 021 = a3Q!l2, 022 = -031*11, 

023 = d3Ciu + /3«15, 024 = d 3 a i 3 + /3«16, 025 = d 3 a 1 6 - /3«13, 

026 = d3«15 ~ /3«14, 031 = a 4 a i 2 , 032 = - a 4 « l l , 

033 = d4«14 + /4«15, 034 = d 4 a i 3 + f^ie, 

035 = d 4 a i 6 - /4«13, 036 = d4Q!i5 - /4«14- (19) 

Case b: a n = sinh r\ip, ai2 = cosh r\ip, a22 = aoom; 

022 = a 3 a n , 032 = 04an. (20) 

The remaining elements ay, 0,y have the same expression as in Case 
a. 

Case c: a n = sinh r\ip, a\2 = cosh r\ip, a.\3 = sin Xip, ctu = cos \ip, 

ais = sin uip, aie = cos uip, a2\ = aoai2, a22 = a0au, a23 = doau, 

a24 = _ doai3 , a25 = /oai6, a26 = - /o«i5, «3i = a i a n , a32 = aiai2, 

a3 3 = dioixz, a34 = d i a u , «35 = / ia i5 , a36 = Ziaiel 
0 n = a2an, 0i2 = a2ai2,0i3 = d2ai3, 0 H = d2ai4 , 01 5 = f2ctis, 

016 = /2a i6 , 021 = a30!l2, 022 = a 3 a u , 023 = d 3 a u , 024 = ~ d 3 a i 3 , 

025 = /3a i6 , 026 = _ / 3 a i 5 , 031 = 04ai2 , 032 = a 4 a n , 033 = d 4 a i 4 , 

034 = - d 4 a i 3 , 035 = /4a i6 , 036 = ~f 1°<-Vi- (21) 

The coefficients a;, d;, /,- (i = 0,1,2,3,4) corresponding to each of 
the foregoing cases are given in the Appendix. 

The determination of the natural frequencies of the beam will be 
established by using relations (17), (17a), (18), and the boundary 
conditions. Thus, considering a circular beam with two free ends, the 
boundary conditions are 
Atip = 0 

M(0,t) = D{0,t) = Q(0.t) = 0 

At tp = ip (total angle of the curved beam) 

M®,t) = DQp,t) = Q(Jp,t) = 0. 

(22) 

Using equation (17a) and the boundary conditions given in relations 
(22), for the nontrivial solution the following determinant must be 

a n (0) 
«21 (0) 
a 3 i (0) 
a n (v) 
a2i (ip) 
a 3 i (ip) 

ai2 (0) 
a2 2 (0) 
«32 (0) 
a X 2 (ip) 

a22 (ip) 
a32 (ip) 

a1 3 (0) 
a2 3 (0) 
a3 3 (0) 
a i 3 (ip) 

a23 (ip) 
a33 (ip) 

a n (0) 
«24 (0) 

a34 (0) 
a n (ip) 

OLu (ip) 
a34 (if>) 

ais (0) 
«25 (0) 
a36 (0) 
ais (ip) 
a25 (ip) 
a35 (ip) 

aie (0) 
a26 (0) 
a36 (0) 
ai6 (ip) 
a26 (ip) 

a36 (ip) 

(23) 

This relation leads to a transcendental equation in u*2 of the 
form 

J7(to*2; R; ip; I; Id; m; F; e; e; 0; g) = 0 (23a) 

which obv\pusly depends on the values of the parameters R,ip,I, Id, 
m, F, t, e, 0, and g. 

Moreover the natural frequencies of the aforegoing system are 
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E/G = 2 , I / I d = 2 .4 , p = 2 

b / h = l , b t / h f = l , b, /b = 0.25, h, /h = 0.25 

Fig. 2 Cross-section geometry 

evaluated by considering that the distributed mass m is substituted 
by n concentrated masses rn\,..., mn located at n discrete points of 
the centroidal axis. For harmonic external loads, we may write 

DY + M-
rd

2Y 

dt 2 " 
DPeiut (24) 

where D = [<%] is a (n X n) symmetrical matrix with elements the 
influence coefficients of the deflection curve of the beam. The de
termination of these coefficients for several cases of boundary con
ditions is given in reference [17]; P = [Pi] is a (re X 1) matrix of the 
external concentrated harmonic loads and M = [ma] is a (n X n) di
agonal matrix of the concentrated masses, (OJ is the circular frequency 
of the existing external loading). 

For the determination of the natural frequencies of the afore
mentioned system an analogous methodology with those given in 
references [12,13,18] is applied. The free motion equation (24) be
comes 

_ d2Y 
DY+M—-=[0] 

dt 2 (25) 

where D = D~L. A solution of this homogeneous equation is sought 
in the form 

Y=Xel (26) 

where X is a (n X 1) matrix of the shape functions and co* is the nat
ural frequency of the system. Inserting equation (26) to equation (25) 
for a nontrivial solution yields 

\D - u>*2M\ = 0 (27) 

Relation (27) leads to an algebraic equation of nth order, from 
which the n natural frequencies of the system can be determined. 

N u m e r i c a l R e s u l t s and D i s c u s s i o n 
The eigenfrequency equation (23a) is solved numerically on a 

digital computer for various values of the slenderness ratio A = s2F/I 
and the ratio R/h for the case of a stubby and a slender beam of X 
cross section (Fig. 2). The respective numerical results are presented 
in Tables 1 and 2. In all cases considered the length s(=R<p) of the 
beam as well as the parameters shown in Fig. 2 have been kept con
stant. The results between parentheses correspond to the dimen-
sionless eigenfrequencies in which the influence of the transverse 
shear effect and rotatory inertia are taken into account. 

Table 1 is referred to a stubby beam with s/h\ = 13.0, th/E =1.83 
X 10~6 and eb/E = 0.0015. From this table the effect of the dimen-

T a b l e 1 D i m e n s i o n l e s s e i g e n f r e q u e n c i e s (fi = w* 2 / 
Elg/FeS*) S 4 ) 

i?̂ ~R7Kr——._. 

3.13 

6.25 

9.38 

40 

0.77 

(0.57) 

8.30 

(7.10) 

32.20 

(28.02) 

1.12 

(0.82) 

9.40 

(7.97) 

44.37 

(38.60) 

T a b l e 2 D i m e n s i o n l e s s e i g e n f r e q u e n c i e s (ft = co*2/ 
Elg/'FeS*) 

R = fl/nj-^-^^ 

6.25 

12.50 

18.76 

100 

2.85 

(2.76) 

34.89 

(33.98) 

176.09 

(175.49) 

5.58 

(5.40) 

41.18 

(40.06) 

190.89 

(185.00) 

sionless radius of curvature R = Rlh\ and slenderness ratio A upon 
the dimensionless first and second eigenfrequencies are given. It is 
clear that as R increases (or equivalently the angle <p decreases since 
s = R<p is constant) the first and second eigenfrequencies increase 
appreciably. 

Table 2 is referred to a slender beam with s/hi = 26.0, eh/E = 0.91 
X 10 - 6 and eb/E = 0.0008. For s constant it may be derived that h2 

= hi/2 since s/hi = 13.0, s/h2 = 26.0. From this Table it can be seen 
that the same influence of J? on the values of first and second eigen
frequencies is also valid. 

Finally, by comparing the results of Tables 1 and 2 the following 
conclusion may be derived: The effect of the transverse shear defor
mation upon the eigenfrequencies for large values of the radius of 
curvature may be neglected even for practical design purposes for 
stubby beams; however, as the radius of curvature decreases this effect 
for stubby beams may be appreciable. 

Conc lus ions 
In this investigation an analytical treatment for the determination 

of the natural frequencies of a circular beam on an elastic foundation, 
in the most general case of response is presented. Among the most 
important results of this investigation one may list the following; 

1 The decoupling of differential equations governing the motion 
of the aforegoing beam. 

2 The closed-form solution of the homogeneous differential 
equation for the deflection y(s,t) and the determination of the natural 
frequencies of the circular beam, including the effects of transverse 
shear deformation and rotatory inertia. 

3 The thorough investigation of the nature of the roots of the 
characteristic equation from which the general integral for deflection 
is dependent and 

4 For stubby beams with small values of the radius of curvature 
the transverse shear effect upon the eigenfrequencies, may be ap
preciable. 
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C a s e a: LT< 0, v < 0, T > 0: 

APPENDIX 
T h e coefficients of the par t i a l differential equa t ion (3) are given 

by 

A5 = kR2 

A i = (2-fiv) -eR2y 

A2=(v + p + l)- eR2(2 - fiv)y 

A3 = - p p ( l + ") - eR2(l + v)y 

A4 = -R2(ky* + my) 

m 
R2m + eR2yy* + p (1 + v)y* - (2 - / u < ) — y 

k 

A$ = kmR4yy* 

A7 = - f c i ? V ( i + j>)m7Y* 

As -kjxR'- R2(l + v)m + (1 + v)eR2yy* + - — y 
kfi 

d 4o d 2o 
A 9 = -R2 —-. y + R2[kR2 - (2 - fiv)y] —-9 

c V 4 d<p2 

-R2[kiiR2(l +v) + {l + v)y)q 

d4q „ d2q 
— — 7 T * _ kR*fi{l + v) —- • 

d<p2dt2 YY dt2 

Assuming t h a t m = 7 * = 0 and q — q(s), t h e resul t ing new coeffi

c ients Ai(i = 1 , . . . , 9) are t h e same with those of the analogous s ta t ic 

sys tem, reference [17]. 

T h e roots of equa t ion (9) for t h e foregoing charac te r i s t i c cases 

are 

21 = - [ # ( | u / 2 | + T1'2) + V(\v/2\ - T1'2)] < 0 

Z2,3 = Pi ± IP2 (29) 

where 

Pi = - ( l / 2 ) 2 l 

P2 = [(3zi 2 + 4II)/4]1''2 (29a) 

C a s e b: I I > 0, v > 0, r > 0: 

z i = # ( u / 2 + T 1 ' 2 ) + # ( u / 2 - T1'2) > 0 

Z2,3 = Pi ± ^P2 (30) 

where 

p 1 = - ( l / 2 ) z i 

P 2 = [ ( 3 z i 2 + 4 n ) / 4 ] ! / 2 (30a) 

C a s e c: T < 0, v < 0: 

z\ = 2 V - I I / 3 cos (x/3) > 0, 0 < x = arc cos [ u / 2 V - 2 7 / I F ] < TT 

z 2 = - 2 V 3 T I 7 3 cos [(TT - x)/3] < 0 

z 3 = - 2 V ^ n 7 3 cos [(TT + *) /3] < 0 (31) 

T h e express ions of n , u , X for t h e t h r e e charac ter i s t ic cases are as 

follows: 

Case a: n = ± i ( | z i | + F * i / 3 ) 1 / 2 

" = ([p*i + (p* i 2 + P22)1 / 2] /2!1 / 2 

X = p2 /2[[p*i + ( p V + P22)1 / 2] /2! (32) 

where 

P*i = Pi - f * i / 3 (32a) 

Caseb: n = ( Z l - F * i / 3 ) 1 / 2 

and u, X have t h e same express ions as in Case a. 

Case c: n = (zx - F * i / 3 ) 1 / 2 

\ = i[\z2\+F*1/3}1'2 

u = i[\z3\ + F^/3}1'2 (33) 

T h e coefficients a,-, d;, /,- (i = 0 , . . . , 4) of t h e mat r ices A, B given 

by equa t ions (17), (17a) are def ined as follows: 

Case a: an = ( n + k^a^/R 

do = (u + kidt)/R 

/o = (X + fufd/R 
01 = [a(kiri

4 - k2n
2 + k3) + n 2 - rn2}/R 

rfi = [aktiu4 - 6u 2 X 2 + X4) + (ak2 - l)(u2 - X2) 

+ (ak3 - n i 2 ) ] / f l 

h = [-otkiiuHu2 - X2) - 2u\(ak2 - 1)]/R 

a 2 = (km* - k2n
2 + k3)/R 

d2 = [kriu* - 6u 2 X 2 + X4) + k2(u
2 - X2) + k3)/R 

f2 = [-A;i4uX(u 2 - X2) - k22u\]/R 

as = \(ai - l ) r i - k4a2(a + ^ ) r i + [£4(1 - ^l2) 

+ (H-I)n1
2n2*]r1)/I3R 

d3 = \-u + dm + fi\ - k4(a + ^)u[ki(u'1 - 10u 2X 2 + 5X4) 

+ k2(u
2-3\2) + k3]\/pR 

f3 = \ \ - d iX + flU - k4(a + (3)X[fti(X4 + 10u 2X 2 - 5u 4 ) 

+ fe2(X
2 - Zu2) - k3]}/pR 

. 04 = ia2/3ri + (a x - l ) n + {(y, + l ) r n 2 - n 2
2 W ) / 

[/3fl(l - yy*io*2) - y]R 

d 4 = !(d 2u + /2X)/3 + (d i - l ) u + / i X 

+ [(p. + D m 2 - n2
2]u}/[PR(l - 77*co*) - y]R 

f4=l(-d2\ + f2u)P-(di-l)\ + hu 
- [(p + l ) m 2 - M2

2]X|/[/3fl(l - / 3 7 * " * ) - y]R (34) 
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Case b: a\ = \a(k\ri4 + k2r^ + ^3) " 
a2 = (km* + k2n

2 + k3)/R 
rV • nfl/R 

(35) 

The coefficients a0, d0, f0; d 1, /1; d2, /W a3, d3, f3; a4, d4, /4 have the 
same expressions as in Case a. 

Case c: ao = (/"I + k4a4)/R 
d0 = (A + k4d4)/R 
/O = (W + fe4/4)/R 
ai = [a(<%iri4 + Air2 + /!3)- • ri2 - TH2]//? 
di = [a(fcxA

4 - k2\
2 + k3) + X2 - ni2]/R 

/1 = [a(fem4 - k2u
2 + k3) + u1 - m2]/fl 

a2 = (Am4 + k2n
2 + k3)/R 

d2 = (fciA4 - £2A
2 + k3)/R 

h= {kxu^-k^ + k^/R (36) 

03 = l(oi - l ) n - &4a2(a + /8)n + [/j4(n
2 + 1) 

+ (n - DmWkilASfl 
d3 = {(di - 1)A - k4d2(a + fi)\ + [k4(l - A2) 

+ (n - DmWlXi/TJfl 
h = I (A - l)u - .Wzte + j8)u + [̂ 4(1 - u2) 

+ (li- l)m2n2
2]u}/PR 

a4 = |a2/Jri + (ax - l ) n + [(iz + Dm2 - n2
2]n}/ 

[PR(l-yy*w*2)-y]R 
d4 = |d2/?A + (di - 1)A + [(zz + D"i2 - rc2

2]A|/ 
[PR(l - yy*u*2) - y]R 

h = |/2|8u + </i - l)u + [(M + D112 - n 2 » / 
[/3fl(l-77*aj*2)-7]7? 

(36) 
(Cont.) 
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Response of a Roadway Lying on 
an Elastic Foundation to Random 
Traffic Loads 
This paper analyzes the response of a roadway lying on a Westergaard foundation to the 
pressures of a load moving on a random profile at a constant velocity. The profile power 
spectrum is based on experimental recordings done on French roads. From the vibrating 
axle characteristics, we may deduce the power spectrum of the exciting load. Then, we ex
amine random bending vibrations so as to determine the expected mean square displace
ments of the roadway. We compare the results obtained for random and harmonic pro
files. We notice that with the hard rubber foundation, mean values of deflections are com
parable. On the other hand, with the soft rubber foundation, the displacement amplitudes 
for random excitation are much higher than results deduced for harmonic excitation. 
Consequently, it appears that with various isolation types, the sine profile is not suffi
cient to predict the roadway behavior. In fact, the actual behavior depends upon the pro
file power spectrum and vehicle characteristics. 

Introduction 
Nowadays, road traffic causes various types of nuisances, especially 

in town centers: air pollution, traffic jams, noise, mechanical vibra
tions . . . . Obviously more and more traffic is diverted onto peripheral 
roads and bypasses in order to reduce congestion. However, we must 
bear in mind that delivery vans and buses will continue in town cen
ters. 

During the past years, many papers concerning these traffic vi
brations have been published. Thus Abrache [1] has examined the 
problems of quality of road surfaces and vehicle comfort. Other 
publications deal with the reduction of traffic vibrations by means 
of 

1 Isolation of buildings [2]. 
2 Walls cast in the ground [3] or trenches filled with thixotropic 

mud [4]. 
3 Isolation of the road (for instance: Farnesina Palace in Roma 

[5]). 

Many papers deal with the response to moving loads of roadway 
of infinite length [6]. But, in most cases, isolation is a local problem 
in the neighborhood of a building. According to this notice, in a pre
vious paper [7], we have calculated the response of a roadway of lim
ited length, lying on an elastic foundation and subjected to a harmonic 
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moving load. In this paper, in order to study its true behavior, we 
propose to determine the bending response of an isolated roadway 
to random loads moving at constant velocity and deduced from profile 
spectra. 

M o t i o n E q u a t i o n s 
Study Hypothesis. We study the bending response of a reinforced 

concrete roadway lying on various strata: sand, hard or soft rubber. 
This roadway has a limited length, a rectangular cross section and a 
random longitudinal profile stated precisely by its power spectrum. 
For simplicity, we assume that along the roadway the excitation is a 
stationary random process. 

If the roadway consists of concrete, we choose mean values for the 
mass per unit volume, Young's modulus, and equivalent viscous 
damping coefficient. We also assume that the isolating rubber is 
perfectly elastic. Similarly, in the case of a traditional roadway lying 
on a sand stratum, the Westergaard hypothesis is taken for granted, 
that is to say that the soil pressure is proportional to the strain. On 
the other hand, our study excludes the separation problems for soil-
roadway contacts. 

We compare the roadway behavior with the response of a beam 
lying on an elastic foundation to a random load moving at a constant 
velocity. This load is represented by a vibrating axle (Fig. 1) moving 
on the random profile. 

Random Bending Vibrations. We study the bending response 
of the roadway represented in Fig. 1 and loaded by a forcep(fl) moving 
at a constant velocity Vo- We assume that this load is evenly distrib
uted on the width a of a wheelbase. Then, according to the notations 
mentioned earlier, the motion equation is written 

Ely ,xxxx 

+ my + fiy + ky = oa(x - v0t)p(t) 
(1) 
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Vibrating axle 
Bending roadway 

Fig. 1 Problem scheme 

where y(x,t) is the roadway displacement and S„ = 1 for u$t - a/2 < 
x < vot + a/2, Sa = 0 everywhere else. 

We notice that the load pit) has a static component deduced from 
Mi and M2, and a random component, function of the profile. The 
system response to the static excitation has already been studied [7]. 
Therefore, we only determine the system response for the random 
component u(t). Thus we consider the equation 

EIy,xxXX + my + iiy + ky = <S„(x - uot) u(t) (2) 

For solving equation (2), we apply the generalized Fourier analysis 
and we try a solution of the type 

yixJ)=iS- Y(x, w) e-iat du> 

where Y(x, a>) is the Fourier transform ofyix, t). 
Similarly, if U(x, o>) is the Fourier transform of Sa (x — uot) u(t), 

the equation (2) becomes 

EIY(x, w) + (-mio2 - inw + mio0
!) Y(x, <o) = U(x, a) (3) 

,xxxx 

We assume that the general solution of this equation is of the 
form 

Y(x, a>) = £ Gn(x)A„(w) 

where the functions G„(x) are the natural functions satisfying the 
differential equation 

GJx)~\n
iGn(x) = 0 where A„4 = mcoJ/EI 

,XXXX 

and the four boundary conditions at the free ends of the roadway, that 
is to say, we have 

ch \„l — cos \nl , , . . x , 
Gn(x) = chX„x + cos \nx - . . . , . .• (sh Xnx + sir, A„x) sh \ „ ! — sin \nl 

Similarly, if we write that 

U(x,w)= D C.„(x)B„(o>) 

we obtain 

A„(o>) ; Bn(w) 
(4) 

m(u)n
2 - on2 + uo2) - i^u 

We now define the power spectrum Sy{w) of the displacement y(x, 

t ) [8] 

Sy(w) = lim 
. |y(*,«)|2 

T—=0 AwT 

where T is an arbitrarily long time. 

.Nomenclature-
A„ (a>) = function of circular frequency co of 

order n 

by. = viscous damping of vehicle system 

B „ M = function of circular frequency co of 

order n 

C = constant 

E = Young's modulus of roadway material 

E(y2) = expected mean square deflection of 

roadway 

/ = frequency 

Gn(x) = natural mode of vibration of order 

n 

hit) = roadway profile 

i = complex number (i2 = —1) 

/ = moment of inertia of area about neutral 

axis 

k = linear spring constant of the isolation 

mattress per unit length 

h\, ky = linear spring constants of the vehicle 
system 

I = length of roadway 
L = wavelength 
in = mass of roadway per unit length 
Mi, M-i = masses of the vehicle system 
n = integer 
p(t) = moving distributed load on a width 

a 
r = integer 
Ry(r) = autocorrelation function of dis

placement 
Sh(o>), 8u(u>), Sy{<i>) = power spectra of pro

file, load, and displacement, respectively 
Sxtx2,uM = cross-correlated spectrum of 

load 
t = time 
T = arbitrarily long time 
u(t) = random component of load 
U(x, 00) = Fourier's transform of 5a (x - v0t) 

u(t) 

Uo = velocity of vehicle 

x = coordinate along roadway axis 

y(x, t) = roadway deflection 

yrm, y s m = mean values of the roadway de
flection for random and harmonic excita
tions, respectively 

yi. y% Y\> Y2 = displacements of masses for 
vehicle system 

Y(x, <x>) = Fourier's transform of y(x, t) 

Zi(w) = complex response of the vehicle tire 

for unit excitation 

5 = Kronecker's function 

X„ = (mwn
2/EI)V* 

ix = viscous damping for roadway material 

T = time variation 

&> = circular frequency 

o)o = circular frequency (OJO2 = k/m) 

o>„ = natural circular frequency 
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Prom equation (4), we deduce 

Sy(w) 
n=lr=l 

lim —-[B„(co)Br(-co)] 
r—» 47rT 

[m(co„2 - co2 + coo2) - i/iCo][m(cor
2 - co2 + co0

2) + i/xw] 

XGn(x)Gr(x) 

The following orthogonality relations 

-0 for n 9^ r 

. / 0 
(*)G r (x)d jc=: 

~/ for rc ; 

allows us to write 

Sy(u) = y2 t £ 
I n=\ r=l 

lim —— | J J U(xi, w)U(x2,-w)Gn(xi)Gr(x2)dx1dx2 T^=» 47rT [JO JO 
X — 

[m(co„2 — a2 + coo2) — i^.w][m((i>r
2 — co2 + o>o2) + i/uco] 

XGn(x)Gr(x) 

For a concentrated load at point (uot), on the hypothesis of a sta
tionary random process, as Erigen [8], we can assume for \U(xi, co) 
U(x2, — co)| the following form: 

lim — [U(xh co), U(x2, -co)] 
r-~» 47rT 

= Su(u>) 5a(xi-v0t) da(x2-v0t) if *i = *2 or rc = r 

— SXix2,u(u) ba(xi-uot) °a(x2-uot) if n ^ r 

where Su(co) is the power spectrum of the random load u(t) and 
) is the cross-correlated spectrum of this same load. But, ac-S-X\X2,U{0>, 

cording to Abrache [1], these cross-correlated spectra are not known 
for the road traffic; consequently we do not take their effect into ac
count. In fact, we only study the roadway behavior for the power 
spectrum Su(co). Then, a rough estimate of the power spectrum Sy(co) 
of response is deduced from 

Sy(<jl) •• 
Su(o>) 

:Gn
2(V0t) GJ(x) 

I2
 n=i[m(o)n

2 - a2 + coo2)]2 + »2o>2 

The autocorrelation function Ry (T) of the deflection y (x, t) is defined 
by the Wiener-Khintchine equation 

Ry(r) s: Sy(u) e-'"T da> 

For T = 0, we obtain the expected mean square displacement E(y2) 

E(y2) =Ry(0) = ^ - f; Gn
2(Vot)Gn

2(x) 

r: Su(o>) 
— dw (5) 

' - » m2(co„2 — co2 + a>o2)2 + li2 to2 

The power spectrum of excitation is deduced from roadway profiles 
and characteristics of moving vehicles. 

In our study, the random load is obtained by a vibrating axle moving 
at constant velocity vo. Consequently, equation (5) is valid only for 
uot e [0, / ] . For Dot > /, we assume that the isolated roadway is not 
loaded: then, of course, the road deflection progressively decreases. 
But, for a true traffic with jams, the carway is permanently subjected 
to a random moving load and then the previous data are not valid. 

P o w e r S p e c t r u m of R a n d o m E x c i t i n g F o r c e a n d 
R e s p o n s e of t h e R o a d w a y 

Practically, these power spectra are recorded with test apparatus 
such as profilographs, viagraphs, analyzers of longitudinal profile. 
Generally, the wavelength of studied roads varies from 1 to 40 m, that 

ROUGH ROAD 

8> 10 
2 1 

WAVELENGTH L - m 

Fig. 2 Profile spectra 

is to say, at the usual velocities we obtain excitation frequencies be
tween 0.5 and 20 Hz. 

As concerns the profile function h(t), the following assumptions 
are made by Dinca and Sireteanu [9], 

1 h (t) is obtained by limiting the spectral band of a 5-correlated 
random function (traveling over plough-land with a velocity exceeding 
15 m/s). 

2 h(t) is obtained by limiting the spectral band of a random 
function with linear exponential correlation (action for paved roads 
and concrete roads). 

3 h(t) is obtained by limiting the spectral band of a random 
function with damped harmonic correlation (traveling over country 
roads). 

In France, recordings obtained mainly by the "Laboratoire Central 
des Ponts et Chaussees" (L.C.P.C.) are represented in Fig. 2. These 
curves are deduced by means of the L.C.P.C. longitudinal profile 
analyzer. This apparatus is drawn by a vehicle moving at constant 
velocity. Consequently, we obtain spectra for only one traffic lane. 

In a double-logarithmic paper, the obtained curve can be compared 
with one or two straight lines. In our study, we take a mean straight 
line of equation 

Sh(llL) = C ( l /L ) - 2 with C = 10" 

and 

Ln = 1 m < L < Li = 40 m 

To reach the frequency spectrum, we use the relation 

Sh(a) = Sh(l/L)/2irv0 

where / notes the frequency. Thus we obtain 

S/,(a>) = 27rCuoAo2 for coi = 27ruo/Li ^ |co| ^ con = 2irvo/Lu 

= 0 everywhere else (6) 

To determine the spectral density of the exciting force, we use Fig. 
1 representing the vibrating axle proposed by Mitschke [10]. Calling 
the dynamic displacements of solids Mi and M2, yi('t) and y2(t), the 
dynamic force transmitted by the tire to the roadway is equal to 
kl[y1(t)-h(t)}=k1Y1(t). 

With the given notations and Y2(t) = y2(t) - yi(t), the motion 
equations of the vibrating axle are written: 

M2[Yi + y2] + b2Y2 + k2 Y2 = -M2 h (7) 

Mi ?! + kx Yi - b2 Y2 -k2Y2= -Mi h (8) 

For an unit excitation h(t) = exp icot, the complex frequency re
sponse Zi(co) of the displacement Yi(t) of the vehicle tire is equal 
to 
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ZiM ' 
w2[(Mi + M2)k2 - MiM2w

2 + ib2u(Mi + M2)] teristics recorded in France on express roads or motorways. 

' (fti - Mio)2)(/e2 - M2w2) - k2M2oP- + ib2u [ki - (Mi + M2)o>2] T h u s > f o r * = °-3 s > t h a t i s t o s a v w h e n t h e vibrating axle is acting 
,. , at x = 6 m, Fig. 4 shows the roadway deflection for the sine profile and 

Thus the spectral density of the compression displacement of tire t h e v a , u e g o f [E(y2)]m f o r t h e r a n d o m p r o f i l e . 
is written 

Sy1(co)=|Zi(co)|2S / l(a)) 

= 27TCMOW2 
[(Mi + M2)k2 - M1M2W2]2 + b2

2ccHMl + M2)
2 

[{ki - Mico2)(fe2 - M2ai2) - k2M2o)2]2 + 62
2a)2[A;i - (Mj + M2)a>2]2 

If the load distribution is even on the wheelbase, the power spec-
trum SU(OJ) of the distributed random load u(x, t) is deduced from 

Su(u>) = ki2 Sy1(w)/a2 for coi < |a>| ^ a>n 

= 0 everywhere else 

Consequently, the value of E(y2) is given by : 

iirk^Cvo 2, „ „.. ,,„ „.., f" [(Mi + M2)k2- MlM2a
2]2 + b2W(Mi + M2)

2 

We notice that for the random load, the values of [jE[y2]]1/2 are 
almost constant along the roadway. However, these values vary in 
terms of the load position. These curves represent the roadway be
havior at a given moment, but for another load position, the deflection 

[(h - MiO)2)(/e2 - M2OJ2) - k2M2w
2]2 + b2

2w2[ki - (Mi + M2W]2 

a
2 

X—r.—: ; — r - rd io 
m2(o>n

2 — o>2 + too2)2 + fi2w2 

Numerical Results and Discussion 
In the numerical study, we have chosen the same data as in the case 

of an alternating force. Thus, we have taken 

For the Roadway: 
1 Sizes: length: 30 m, width: 3.5 m, thickness: 0.3 m. 
2 Material: reinforced concrete. 
3 Mean characteristics of material: Young's modulus E - 4 X 1010 

Pa, mass per unit volume = 2.5 X 103 kg/m3, equivalent viscous 
damping coefficient fi = 1.8 X 103 units SI per unit length. 

For the Elastic Foundation: 
1 Equivalent spring constant of sand layer k = 3.4 X 107 N/m per 

unit length. 
2 Equivalent spring constant of Farnesina-type rubber k = 2.5 

X 108 N/m per unit length. 
3 Equivalent spring constant of soft rubber k - 5 X 106 N/m per 

unit length. 

For the Moving Load: 
1 Constant velocity: VQ = 20 m/s. 
2 Characteristics of vibrating axle masses: Mi = 103 kg, M 2 = 1 1 

X 103 kg; spring constants ki = 5 X 106 N/m, k2 = 5 X 105 N/m; 
damping coefficient b2 = 1.5 X 104 units SI. 

These values show that for the translation motion of the system 
roadway-elastic foundation, the natural frequencies are about 18 Hz 
with a sand foundation, 49 Hz with a hard rubber foundation and 7 
Hz with a soft rubber foundation. For the vehicle, the natural 
frequencies are about 1 Hz (box-resonances) and 12 Hz (wheel-reso
nances). 

The form of the power spectrum Su((t>) is given on Fig. 3 as the 
variations of |Zi(co)|2 and S/,(co). These spectra are limited to 
frequencies between 0.5 and 20 Hz, then the profile wavelengths vary 
between 1 and 40 m. Consequently, Su(OJ) = Ofor |<o| < i r and \u>\ > 
40 -?r rad/s. 

For each foundation, we calculate E(y 2) with formula (9). The load 
moves at a constant velocity equal to 20 m/s and the results give the 
numerical values of E(y2) for 20 positions of load, that is to say, every 
1.5 m. This computation is effected with an IBM 1130 computer and 
in order to obtain enough precision, we consider 50 terms in equation 

(9). 
For each position, we compare the results obtained with a random 

load and with an alternating load deduced from a harmonic profile. 
This profile has an uneven amplitude equal to 1.8 X 10~3 m and a 
wavelength equal to 10 m. These values correspond to mean charac-

aspect can be different. Thus, for each studied position of the vi
brating axle, we calculate for the case of a random load, the mean value 
of [-E[y2]]1/2 which we call yrm. Similarly, for the alternating excita
tion, we deduce the root mean square value of displacements, called 
ysm- For each foundation type, Fig. 5 gives variations of yrm and ysm 

against load position. 
The curves show that in the case of isolation with the Farnesina-

type rubber, the mean values obtained for random loads are compa
rable with those calculated for alternating loads. With this hard 
rubber, the natural frequency is equal to about 49 Hz higher than the 
excitation frequencies and therefore the amplification factors are 
reduced. 

On the other hand, for the sand foundation and the soft rubber 
foundation, the calculated displacements are much higher for random 
loads than for alternating loads. Thus we obtain a mean ratio of de
flection equal to 3.4 and 5.7 for sand and soft rubber, respectively. To 
explain this, we should bear in mind that the natural frequency of the 
system is about 18 Hz for the sand foundation and 7 Hz for the soft 
rubber foundation and consequently these frequencies are in the 
0.5-20 Hz range of random excitation. Therefore, we have resonance 
problems with high amplification factors. On the other hand, with the 
alternating force, the excitation frequency is constant and equal to 
2 Hz. Therefore, in this case, we cannot have resonances and the 
amplification factors are smaller. 

C o n c l u s i o n s 
In this paper, we have determined the bending dynamic displace

ments of a roadway lying on elastic solid material (sand or rubber). 
We have examined both cases: alternating load (sine profile) and 
random load (true profile of roads). When the resonance frequency 
of the roadway-foundation system is in the range of load frequencies 
studies with an alternating load gives results much smaller than those 
deduced for a random load. This remark is interesting because, if with 
some foundation types (Farnesina rubber for instance), the alter
nating load hypothesis is sufficient to find the roadway response, on 
the other hand, with other foundation types (sand and soft rubber) 
the results are very different. Consequently, in order to study the 
actual behavior of the roadway lying on various foundation types, it 
is preferable to know the characteristics of random traffic loads. Thus 
we have a more general method for deducing the dynamic displace
ments of the roadway, and eventually finding the vibration amplitudes 
acting on building foundations. 
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Equivalent Linearization for 
Hysteretic Systems Under 
Random Excitation 

A method of equivalent linearization for smooth hysteretic systems under random excita
tion is proposed. The hysteretic restoring force is modeled by a nonlinear differential 
equation and the equation of motion is linearized directly in closed form without recourse 
to Krylov-Bogoliubov technique. Compared with previously proposed similar methods, 
the formulation of the present method is versatile and considerably simpler. The accuracy 
of this method is verified against Monte-Carlo simulation for all response levels. It has 
a great potential in the analysis of multidegree-of-freedom and degrading systems. 

I n t r o d u c t i o n 
Because of the highly nonlinear and hereditary behavior of the 

restoring force, analytical studies of random response of inelastic 
structures have been mostly on the development of approximate 
method [1-6]. In terms of application to practical structures, the 
method of equivalent linearization (M.E.L.) has the greatest potential; 
however, there is a very serious limitation that the accuracy is rather 
poor for elasto-plastic or nearly elasto-plastic systems. The existing 
M.E.L. relies on a Krylov-Bogoliubov (K-B) technique which is es
sentially a narrow-band assumption while in reality the response of 
an inelastic structure could be quite wide band, i.e., it has a tendency 
to drift and does not undergo as many displacement reversals as in 
a sinusoidal oscillation implied by the K-B technique. Consequently 
the K-B method may seriously overestimate the energy dissipation 
capacity of the system. This may account for the fact that the existing 
M.E.L. underestimates the RMS response of a nearly elasto-plastic 
system by up to 50-60 percent in the range 0.5 < ax/y < 3 where Y = 
yielding displacement, ax = RMS response [7]. 

An alternative method based on a direct linearization of the Fok-
ker-Planck equation was used in the study of an offshore structure 
with bilinear restoring forces [8]. The response statistics were obtained 
by solving the Liapunov covariance matrix differential equation. The 
linearized systems coefficients were obtained by a heuristic procedure. 
RMS responses in the range of 30-80 percent of the yield level were 
obtained and compared well with simulation results. Recently, a 
Gaussian closure method was proposed for. the study of a hysteretic 
system with a smooth restoring force [9]. The solution procedure is 
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similar to that in reference [8]. However, the linearized system coef
ficients are functions of improper integrals involving transcendental 
functions which can be evaluated only numerically. 

The purpose of this paper is to present a method of equivalent 
linearization for hysteretic systems with smooth restoring forces. No 
K-B approximation is used and the equation of motion of the systems 
is linearized directly in closed form, i.e., the coefficients of the lin
earized system are obtained exactly as simple algebraic functions of 
the response variable statistics. The solution procedure is the same 
as in [8, 9]. Both stationary and nonstationary solutions are obtained. 
The main advantage of the proposed method is the simplicity of the 
formulation. It can be easily extended to analysis of multidegree-
of-freedom (M.D.F.) and degrading systems. The accuracy of this 
method is verified against Monte-Carlo simulations for all ranges of 
response levels. 

T h e H y s t e r e t i c R e s t o r i n g F o r c e Mode l 
Following reference [5], the restoring force in a hysteretic system 

is described by 

Q(x, x) = g(x, x) + z(x) (1) 

in which g = a nonhysteretic component, a function of the instanta
neous x and x. z = a hysteretic component, a function of the time 
history of x. z is related to x through the following first-order non
linear differential equation. 

- 7 l * | z | z | ' + Ax (2) 

in which y, /3, A, and n are parameters. It has been shown (reference 
[5]) that a hysteretic relationship exists between z and x and one can 
construct a variety of restoring forces, such as softening or hardening, 
narrow or wide-band systems. Parameters y and /3 control the shape 
of the hysteresis loop, A the restoring force amplitude, and n the 
smoothness of the transition from elastic to plastic response, e.g., a 
large value of n corresponds to an almost elasto-plastic system. 

Without loss of generality, attention will be concentrated on the 
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response analysis of a S.D.F. system with the following equation of 
motion (if needed, additional nonlinearity in the damping and stiff
ness can be easily introduced), 

x + 2fo<W£ + oui>a2x + (1 — a)o>o2z = f(t)/m (3) 

For example, for n = 1, A = 1.0, y = /3 = 0.5, and <x « 1, equations (2) 
and (3) represent a nearly elastoplastic oscillator with smooth tran
sition, x = nondimensional (normalized by Y) displacement; fo = 
viscous damping ratio; coo = preyielding natural frequency = 
VFy/m Y; a = post to preyielding stiffness ratio. 

the only restoring force in equation (3). For this case, ai = 0 and 
equation (13) gives a damped oscillation around a permanent dis
placement, the behavior of a elasto-plastic system. Therefore the 
third-order linear system retains most of the inelastic behaviors of 
the original system and is easy to handle analytically. 

When the excitation is a uncorrelated shot noise (including white 
noise), the differential equation of the covariance matrix of the re
sponse variables x, x, and z is derived in the following. 

Introduce the vector y iyi = x, yi = z, and ys = x); equations (7) 
and (8) can be rewritten as a system of first-order differential equa
tions 

The Equivalent Linear System 
Writing equations (2) and (3) in the form 

g ( x , x , x ) = f(£) (4) 

in which, the vector x = (x, z), g = the left-hand side of equations (2) 
and (3). If f(t)/m is a zero-mean stationary Gaussian process, it has 
been shown by Atalik and Utku [10] that under the conditions that 
g satisfies some smoothness requirements the mean square error in 
replacing equation (4) by the equation of motion of a linear system 

MX + CX + KX = f 

can be minimized if the elements of the matrices are given by 

(5) 

Mu = E 
bx.j 

dx. 
(6) 

in which E[ ] = expected value. It has been shown [11] that equation 
(6) gives a true (global) minimum if the matrix E[xxT] where x = 
vector (x, x, z, z)T is nonsingular; otherwise, the solution will not be 
unique but will be as good as any other solution. Therefore the gov
erning equation of motion of the equivalent linear system are 

x + 2f0cooi + au>t?x + (1 - a)coo2z = f(t)lm 

z + C2ix + K22z = 0 

in which, for the case n 

•yE 
d\x\ 

dx 
+ m\z\]-A 

K22=yE[\x\) + PE 
Z\z\ 

dz 

(7) 

(8) 

(9) 

(10) 

Since f(t) is a Gaussian process, and the system is linear, x and z are 
jointly Gaussian. The two coefficients C2i and K22 can be evaluated 
in terms of the second moments of x and z. 

-V 
K22 = V - 7<Tx 

E(xz) 
y + /3<T2 

+ 
,E(xz] 

(11) 

(12) 

Equations (7), (8), (11), and (12) provide a direct closed-form lin
earization of the equation of motion. Note that no averaging over one 
cycle of oscillation or narrow-band assumption is made here. C21 and 
K22 for the case n + 1 is given in the Appendix. 

For example, for the case 7 = /3 = 0.5, z represents the restoring 
force of a smooth elasto-plastic system (reference [5]). The dynamic 
characteristics of the linearized 3rd-order oscillator can be described 
in terms of the free-vibration solution of the following form: 

X(t) = C i e - a " + C2e" ; sin (w't + </>) (13) 

in which Ci, C2, and 4> are the constants determined by the initial 
conditions of x, x, and z. The first term allows some "drift" in the 
response, an essential feature of inelastic response. When a = 0, z is 

dt 
y = gy + F (14) 

in which 

g = 

F = 

" 0 
0 

PI 
\f(t)lm) 

0 

-K22 
- ( 1 - a)o)0

2 

0 
—C21 

(16) 

Let the covariance matrix of y be S with Sy = E\yiyj], it can be shown 
that [12] S satisfies the following differential equation: 

dt 
S = gS + Sg T + B (17) 

in which g T = the transpose of g. 
B is a matrix of the expected values of the products of the forcing 

functions and the response vectors. By = 0 except that S33 = l(t), the 
intensity function of the shot noise. If f(t)/m is a white noise, £33 = 
27rGo where Go = power spectral density of the white noise. 

If the excitation is stationary, B is independent of t; the stationary 
solution can be obtained by solving the Liapunov matrix equation 

gS + SgT+ B = 0 (18) 

Making use of the fact that S is symmetric, one can rewrite equation 
(18) in a standard 6 X 6 matrix equation. Since K22 a n d C21 in g de
pend on the response statistics, an iteration solution procedure is 
generally required. To start the iteration one can use the solution of 
a linear system with a stiffness equal to the preyielding stiffness of 
the nonlinear system. 

When the excitation is nonstationary, or for the transient solution 
of the system under stationary excitation, the time-dependent co-
variance matrix of y can be obtained by solving equation (17) nu
merically based on a step-by-step integration method. This method 
has been used in reference [8], 

Solution for Filtered Shot Noise Excitation 
When the excitation is correlated, it can be modeled as a filtered-

shot noise. For example, in seismic response analysis, one frequently 
models the excitation by passing the shot noise through a filter with 
a frequency transfer function of the form of the Kanai spectrum 
[13] 

S(a>) = So 
V + 4 W , »&»<•>» 

(19) 
' K o ) 2 - ^ 2 ) 2 + 4<4, 2 f g V 

in which o>g and fg are the natural frequency and damping ratio of the 
filter representing the spectral characteristics of the ground excitation. 
For this case, the required equations of motion are 

x + 2foWo^ + ctoio2x + (1 — a)a>o2z WgWgXg ~ ° 

in which fit) = 
excitation I(t) 

(20) 

z + C21X + K22z = 0 (21) 

xg + 2£gweXg + o>g2Xg = f(t) (22) 

shot noise with intensity lit); for the case of stationary 
= 27TGQ. Therefore the solution procedure is identical 
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to the previous case. For example, if yi = x, yz '• 
= xs, g in equation (14) is 

" 0 
0 
0 

—awo2 

0 

0 

-#22 . 
0 

- ( 1 - Gf)o>02 

0 

0 
0 
0 

o>g2 

- 0 ) g 2 

1 
—C21 

0 
2 foo)0 

0 

0 
0 
1 

2£gws 

-2£eo}g 

z, yz = xg, y4 = x, ys, 

(23) 

By = 0 in B except B55 = I(t). 

Numerical Example and Comparison With Monte-
Carlo Solution 

A nearly elasto-plastic system (A = 1.0,7 = (3 = 0.5, a = 1/21, and 
N = 1) under white noise excitation is studied since the existing 
E.L.M. has given poor result for such systems [7]. o>o = 1 rad/sec and 
fo = 0 in equation (3). The RMS response ax as a function of the ex
citation level is shown in Fig. 1. ax is normalized by D — V2Go/o)o3 

and the excitation level is indicated by the nondimensional quantity 
D/Y. Grid lines for the factor ox/y are also shown in Fig. 1 to indicate 
the level of yielding that has taken place in the oscillator. It is seen 
that the results cover a wide range, from ffx/y = 0.05 to <TX/Y = 100. In 
the Monte-Carlo solutions, white noises are generated digitally and 
equations (2) and (3) are integrated based on a step-by-step predic
tor-corrector method. The covariance matrix of the response variables 
is evaluated by taking the temporal average over a length of 30 cycles 
of oscillation. 

The simulated RMS responses for various excitation levels are 
compared with the analytical solution in Fig. 1. The agreement is very 
good for all response levels. The small scatter can be attributed to the 

sampling fluctuation since 30 cycles of oscillation is not a very long 
sampling time. The Gaussian closure solution of the same system is 
also shown in Fig. 1 by the dashed line. The closure method generally 
gives conservative results which are overly so in the low response range 
(ax/Y < 1). 

The apparent frequency <sxlax and the ratio azlax as functions of 
the nondimensional excitation are compared with the Monte-Carlo 
results in Fig. 2. Again the agreements are very good. At low excitation 
level, the oscillator is nearly linear; as a result oz/<jx is almost unity. 
At high level of excitation, axlax approaches the postyielding natural 
frequency V « o>o and ajax is almost zero since z is bounded by unity 
and x increases with the excitation. The correlation coefficients pXjZ 

and pXjZ (note pXjX = 0) are compared with the Monte-Carlo results 
in Fig. 3. The agreements are generally very good except that the 
analytical solution overestimates pXlZ by 15-20 percent for D/Y > 0.8 
(or (rx/y > 8). 

For a viscous damping ratio of fo = 0.05, the <TX/D- values are shown 
in Pig. 1. The effect of the viscous damping is important at the two 
tails where the hysteretic energy dissipation is comparatively small. 
Also, in these regions UX/D approaches a constant value as in the case 
of a linear system with a constant viscous damping ratio. The com
parison with Monte-Carlo result is again very good for all levels of 
response. 

The a-*//)-values for systems with fo = 0, a = 1/21, n = 1 and a 
hysteretic restoring force z of type b and d described in reference [5] 
are compared with type a, the nearly elasto-plastic system, in Fig. 4. 
Type b is a softening system with a "pinched" hysteresis loop while 
type d is a hardening system. At low level of excitation, the responses 
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of systems a and d are almost identical while system 6 is much higher 
since in this range the hardening or softening effect is not important 
but damping effect dominates. At high level of excitation the re
sponses of systems a and b are almost identical while that of d is much 
lower. These of course are what one would expect in view of the re
storing force behaviors shown in reference [5]. The o-^/c-values for 
the case n = 1 and 3 (y = fl = 0.5, fb = 0 and a = 1/21) are compared 
with those of a similar bilinear system [7] in Fig. 5. There are con
siderable differences in the low response range, apparently due to the 
fact that in this range while certain amount of damping exists in the 
smooth system, particularly the case n = 1 (reference [5]), the bilinear 
system is virtually undamped. 

The nonstationary solution of the case fo = 0, y = fi = 0.5 and a = 
1/21 is compared with Monte-Carlo solution (ensemble average of 200 
responses) in Fig. 6. The agreement is good except that the small os
cillation of the mean square responses is not predicted by the ana
lytical method. 

Summary and Conclusion 
A method of equivalent linearization for smooth hysteretic systems 

under random excitation is proposed. The hysteretic restoring force 
is modeled by a nonlinear differential equation and the equation of 
motion is linearized directly in closed form without recourse to Kry-
lov-Bogliubov approximation. The linearized system is 3rd order and 
retains most of the inelastic response behavior. Although similar 
methods of modeling and the solution procedure have been available 
in the literature, the formulation in the proposed method is versatile 
and considerably simpler and the accuracy of this method has been 
verified against Monte-Carlo simulation for all response levels. The 
method has a great potential in the analysis of multidegree-of-freedom 
and degrading systems. This is presently under investigation by the 
author and some preliminary results have already been obtained 
[14]. 
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Nonlinear Contact Geometry Effects 
on Wheelset Dynamics 
The nonlinear dynamic behauior of a simply restrained railway vehicle wheelset on tan
gent track is investigated. Nonlinearities due to the kinematics of wheel/rail contact (ex
cluding flange contact) and creep force variation with creepage are considered for mildly 
noncircular wheel and rail profiles. The general equations of lateral and yawing motion 
of the wheelset are derived. These are then simplified by considering both normalized am
plitude e of the motion and angle of wheel/rail contact in the undisturbed position «o as 
small parameters. Asymptotic solutions describing the influence of the nonlinearities on 
the stability and frequency of wheelset motion are obtained using the method of multiple 
time scales. The results are used to derive conditions for which a linear creep force model 
is valid. 

Introduction 

The basic motion of a railway vehicle wheelset is a combined lateral 
translation * and yaw \p (Fig. 1) which results from the wheel taper. 
Linear analyses [1, 2] show that influences of axle loading, wheelset 
inertia, suspension, and creepage forces developed at the wheel/rail 
interface result in unstable motion above, and stable motion below, 
a certain forward speed, termed the critical or secondary hunting 
speed. A knowledge of the factors which influence secondary hunting 
is important, since wheel/rail wear, passenger/cargo discomfort, and 
the tendency to derail are increased in the unstable mode. 

It is well known [3] that the dynamics of a wheelset are inherently, 
nonlinear. Among the sources of nonlinearity are as follows: 

1 The geometry of wheel/rail contact, including flange contact 
2 The creep force variation with creepage. 
3 The suspension elements which restrain the wheelset motion 

relative to the truck or bogie. 
Most nonlinear analyses conducted to date have dealt with the effects 
of flange contact, although some have included, in an ad hoc way, 
some of the geometric nonlinearities which occur. 

Law [4] and Law and Brand [5] have considered, using the Kry-
lov-Bogolyubov method, the coupled effects of flange contact and 
nonlinear roll <l> (Fig. 1), which they assume related to the lateral 
translation x as if) — aix + a^x3. Although a significant effect of the 
nonlinear roll on limit cycle amplitude (with flange contact) was re
ported, we note that several other nonlinear contact geometry effects 
are present and, as will be shown, may be as important. Law [6] has 
used a similar model to study the effect of track irregularity on the 
response, particularly the "derailment parameter" L/V (ratio oflat-
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eral to vertical contact forces). More recently, Cooperrider, et al. [7], 
have studied the limit cycle oscillations based on a nine-degree-of-
freedom wheelset/truck/car body model. In this work the describing 
function approach [8] was used to model nonlinearities in left and 
right wheel rolling radii and wheel/rail contact angles. 

Cooperrider [9] has also analyzed numerically the nonlinear motion 
of a truck and two wheelsets. He considered simultaneously flange 
contact, the hysteretic side bearer friction as modeled by Matsudeira, 
Arai, and Yokose [10], and a nonlinear lateral and longitudinal creep 
force model. He found that with flange contact, stable limit cycle 
motion could occur at speeds below the linear critical speed. 

Brann [11] considered a free wheelset with a single geometric 
nonlinearity in the so-called gravitational restoring force; this re
storing force occurs if the wheels are profiled and is due to variation 
with lateral translation of the lateral components of left and right 
wheel-rail contact normal forces. Although Brann showed that limit 
cycle motion could occur, we note that the presence of a profile non-
linearity of the magnitude required will give rise to many other non
linear effects in the equations of motion. 

Hannebrink, et al. [12], have recently used the describing function 
method to study wheelset limit cycle behavior resulting from flange 
contact for several wheel and rail profiles, flange clearances, and axle 
loads. A linear creep force model was used. It was shown that stable 
limit cycle motions are possible at forward speeds greater than the 
linear critical speed. 

In the aforecited investigations, the equations of wheelset motion 
have been derived in an ad hoc manner, generally by adding specific 
nonlinear terms to the linearized equations, or by simply replacing 
certain linear terms with nonlinear ones. These procedures result in 
the omission of many nonlinear effects of potential importance. In 
the present investigation, we derive the general equations of motion 
with no a priori assumptions as to the relative magnitudes of the 
myriad kinematic and dynamic nonlinearities which eventually ap
pear. By considering both normalized lateral translation amplitude 
e and contact angle an in the undisturbed position (x = \p = 0) as small 
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Fig. 1 Definition of wheelset coordinate systems, degrees of freedom 

parameters, a systematic assessment of the importance of the indi
vidual nonlinearities has been made. 

We investigate the influence on wheelset motion of geometric and 
creep force nonlinearities not associated with flange contact. We 
consider mildly noncircular wheel and rail profiles and nonlinear creep 
force variation with creepage. The equations of motion for moderate 
forward speeds are derived and solved using the method of multiple 
time scales. 

The results show that nonlinearities in the velocities of creep con
tribute terms to the equations of motion which can be as large as the 
usual linear terms which describe secondary hunting. However, only 
the frequency of the motion is thereby affected. The primary effect 
on system damping is shown to be caused by nonlinear variation of 
creep force with creepage, which tends to amplify any damping (or 
undamping) present, but which does not affect the critical speed of 
secondary hunting. It appears that limit cycle motions cannot occur 
for the mildly noncircular profiles considered here and without flange 
contact. Conditions have been derived for the validity of a linear creep 
model and these show that such a model may be invalid for typical 
wheelsets in moderate amplitude motion. 

E q u a t i o n s of M o t i o n 
The six wheelset degrees of freedom are shown in Figs. 1 and 2. The 

lateral motion is described by lateral translation x, yaw \p, roll 4>, and 
vertical translation z. The forward degrees of freedom are translation 
y and spin 8. We employ inertial (;, ;', k), wheelset (ni, n2, ri3), and 
contact zone (p, t, n) coordinate systems (Fig. 1). The equations for 
the forward motion (y, 8) are of second order in x and \p and can 
therefore be decoupled from the lateral motion. Furthermore, if both 
wheels maintain contact with the rails, the vertical displacement z 
and roll <t> are uniquely determined in terms of x and \p, and the motion 
can be described completely by these two coordinates. 

For a simply suspended, mass and configurationally symmetric rigid 
wheelset driven on tangent track at a constant angular rate 8, the 
equations of motion have been derived in the wheelset coordinate 
system [13] and are given as follows: 

mx + kxx = SF3 - W<j> (1) 

. m(y+2x\j/ + x'\p) + kyy = SFi (2) 

m(z + 2xj> + xj>) + kzz = SF2- W (3) 

ITip - ILdit> + hf = SM2 + LAFt + uRFlR + uLFlL 

+ RR cos 8RFSR + RL cos 6LF3L (4) 

n 2 

a 

P 

V = r f l - \ \ / . 

Fig. 2 Spin geometry; right wheel viewed from track center line; at rest 8R 

= 37T/2 

- lTj> - lhH - k ^ = SMi + RR sin 8RF3R 

+ RL sin 8LF3L -LAF2- URF2R - ULF2L (5) 

The equation for wheelset spin has not been included, as it serves only 
to define the driving torque needed to maintain the assumed constant 
8 condition. 

In equations (l)-(5), m is the wheelset mass, IV the total load 
supported by the axle, and IT and / j , the transverse and longitudinal 
moments of inertia, respectively (with radii of gyration KT and Ki). 
Suspension spring constants are denoted by kx, ky, kz, k^,, and k^,. R 
is the instantaneous rolling radius, u the distance to the contact point 
along the axle, and 6 the location of the contact point around the wheel 
periphery (Figs. 2 and 3). The subscripts R and L refer to right and 
left wheel contact values, respectively. In the rest position (x = \j/ = 
0) RR = RL = r, 9R = 8L = 3TT/2, and UR = uL = 0. The distance be

tween the rails is 2L. 
The forces and moments Fi, F2, F3, Mi, and M2 in the n\, n% and 

n3- directions are those due to creepage and normal contact, as yet 
unspecified. We have used the notation SFi = FiR + F\L and AFi = 
FiR — FiL, etc. The contact forces and moments will be determined 
in an axis system fixed in the instantaneous plane of contact (Fig. 1), 
and then transformed to the wheelset system, using the following 
transformations [14]: 

FlH = -RR'(1 + Jfc*)-i/s cos 0RF±R 

+ sin 0RFfa - (1 + As ' 2 ) - 1 ' 2 cos 8RNR (6) 

F2R = RR'(1 + RR'Z)-V> sin 8RF±R 

+ cos 8RF]1R + (1 + RR'2)'1'2 sin 8RNR (7) 

F3R = (1 + RR'2)-l'2F±R -RR'{l + RR'2)-V2NR (8) 

F x is the lateral creep force, F\\ the longitudinal creep force, and N 
the normal contact force, so that FR = FxRpr + FhtR + NRKR, Fig. 
1. The transformations for the left wheel and for the contact moments 
are the same (note, however, that M± = M\\ = 0). In equations (6)-(8) 
RR' is the rate of change of rolling radius with distance uR along the 
right wheel, RR' = dRR/duR, Fig. 3. 

In the sequel the creep forces will be expressed in terms of a product 
of creep coefficient / and creepage £. Defining a normalized creep 
coefficient fi = 2f/W, we will consider the case of moderate forward 
speeds, such that Fe is at most order unity and fie is 0(F). Therefore, 
terms of order ^e3, Fe2, and e will be retained in the equations of mo
tion. Additional simplification will be made by considering the or-
derings in rest contact angle a0-

Equations (l)-(5) are now nondimensionalized using the following 
nondimensional parameters: 

F = mV2/W(Lr)1'2 x = tx(Lr)1'2 

T_= a0
1/2Vt/(Lr)^2 ^ = efa0

1/2 

V = y/V - 1 S w = kx,y,z(Lr)V2/W 
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REST CONTACT 
LOCATION ON RAIL 

Fig. 3 Definition of contact geometry parameters: un, vR measured from 
rest contact locations on wheel, rail, respectively; shown is rear view with 
x > 0, uR < 0, Vf, < 0 

where V = rd and a0 is the angle between the contact plane and the 
horizontal when x = \p = 0. The nondimensional equations of motion 
are 

ea0[Fx" + (Lr^x/S] + eSxx = SFS/W (9) 

Ft 2a0
l'2[V' + 2x'i'a0 + xf"a0] + t2Syyi = SFJW (10) 

Fi2a0[z" + (Lr)^2a0(2x'2 + xx")/b] + e2Szz + 1 = SF2/W (11) 

Fea0
3/2[(KT

2/L(LrW2)r - (KL
2x'/6(Lr)^2)\ + ta0

mS$ 

= (L + uA){AFi/WL) + uASFi/WL) + (ft cos 8)S(SFS/WL) 

+ (R cos 6)A(AF3/WL) + (SM2/WL) (12) 

-Fea0[(KL
2/Lr)i' + (aoKT

2ILb)x"} - eao((Lr)1'2/S)S4M, 

= (SMJWL) - (L + I M ) ( A F 2 / W X ) ~ u s (SF 2 /WL) 

+ (R sin 0)s(SiA,/WL) + (fl sin B)A (AF3/WL) (13) 

Primes denote differentiation with respect to the phase angle T, which 
is defined in terms of the kinematic frequency for zero wheel curva
ture. The Froude number F is a ratio of inertial and gravitational 
influences. The terms Sx, S+, etc., are nondimensional stiffnesses. The 
barred quantities x and \f/ are nondimensional, and 6 is a small pa
rameter of the order of the maximum value oix/(Lr)1/2, so that x and 
^ are order unity. The kinematic parameter 5 = L - r tan a0. The S 
and A subscripts on the kinematic parameters denote symmetric and 
antisymmetric left and right wheel contributions, i.e., RR sin OR = 
V2[(fl sin 0)s + (R sin 6)A], while RL sin 6L = 1/2[(R sin 8)s - (R sin 
0)A1-

We now consider the case where both wheel and rail are mildly 
noncircular and expand the rolling radius R and contact angle a in 
Taylor expansions about the values r and a 0 at x = \p = 0, e.g., 

RR S r + u f lr f i ' + (UK 2 K„, ) /2 + (uRWw)/3 

tan C*K s a0R - #> f l + flpUs2 (15) 

Here Kw and Kp are wheel and rail curvatures for x = \p = 0, and Hw 
and H p are the associated rates of change of curvature, VR is the hor
izontal distance along the rail, Fig. 3. The condition of "mild noncir-
cularity" is that Hw and Hp be of order unity. Note that, in terms of 
the present parameters, the "effective conicity" X [1] is given by X = 
tan ao/(l - 7) , where 7 is the curvature ratio, 7 = KWIKP. 

By combining equations (9), (11)-(13) and (6)-(8), the wheelset 
response is related directly to the loadings which arise in the contact 
zones. Equations (14) and (15), along with the kinematic relations 
derived in [14] for the dependence of UR, UI, UR, UL, cos 6, and sin 6 
on x and $> are then used to express all kinematic parameters in the 
resulting equations of motion completely in terms of x and f. Upon 
completion of these steps, the equations of motion can be solved for 
the lateral and longitudinal creep forces and the normal contact forces, 
as follows: 

SF± 

W 
•Feoto 

5 
' - + 
L 

<*oKL'-

Lr 

(Lr)1 '2 _ 
+ ea0 x 

„ d _ ((Lr^boCoK, 
eSv — x +• 

L 

AFj 

W 
^ = - J W / 2 

L5(l - 7) 

KT2 -„ KL
2 

-,//' L(Lr)1'2 Y d(Lr)1'2 

ect0b0C0(Lr)V2 AF± 

L 8 U - 7 ) W 

SMn 

WL 

(16) 

- e a 0
1 / 2 S ^ • 

ta0(Lr)U2baKwx AMn 3 / 2 r T AF , d -
+ 77, : 777r-+(a° 7^—~ + 6 - a o 3 / V (IV) 

5(1 - 7) WL L W L 
SN 

W ' 
•1 + oto-

AF± 

W 
(18) 

AN 

W ' 
Fea0x" -+ a0 1 

+ 6 h+z)< 

„ KL
2- (LrY'2 „ _ 

• tea0—— y/' - ea0—;—S^x 
Lr 6 

[«o+2^+6ao3 /V~ , eboC0Kw(.Lr)V2_AF_L 
-1 — x-L 5 ( l - 7 ) W 

(Lr)"2_ 
+ e x 

8 
lr -b0 

L ( l - 7 ) 
(19) 

where b0 = L + a0/Kf, and C0 = L + a0/Kw. SFX is the net lateral creep 
force on the wheelset, and AF\\ is proportional to the yawing moment. 
Terms of O(eao2) have been dropped in the equation (16) for lateral 
translation, as have terms of O(€ao5/2) in the yaw equation (17). 

To describe the creep forces SF±/Wand AF\i/W and the creepage 
moment Mn, a model similar to that used by Cooperrider [9] has been 
adopted. Primary lateral and longitudinal creep forces, as well as a 
contribution from the so-called lateral/spin creep, are included. In 
addition, a moment about the contact normal is produced in pro
portion to the component of wheelset angular velocity along this 
normal. Following Carter [15], the instantaneous rolling velocities VR 
- RR6 and V/, = Rid are used to normalize the creep velocities to 
define the creepages. The normalized creep force model is given as 
follows: 

SFX 

W - M £ X S 

AFl_ 

W 

AFX_ 

W 
SMn 

WL ' 

AMn 

WL 

x > f r M2£r2 

[ 3M/ 27M/2 

t fi »& , 

/*/,« 

M2£r2 

27M/2. 

L 
-HLB—(vn)A - M?j_,4 

r 

r 
j)-n)A 

(14) KS.fi 

(20) 

The symmetric and antisymmetric contributions to lateral and 
longitudinal creepages £j_ and £||, as well as the spin creepage terms 
(u-n)s and {w-n)A, have been given previously [14] for the mildly 
noncircular profiles considered here. Lateral and longitudinal creep 
coefficients are assumed equal, and normalized creep coefficients are 
defined by MLO = 2fLt/WL, and M» = 2f0/WLr. Typically, the lat
eral/spin creep coefficient nu = 0(1), while the spin creep coefficient 
fj.11 = 0(10 - 2). The resultant creepage £7- appearing in equation (20) 
is defined by £T = (£x2 + £||2)1/2. The value of sliding friction M/ de
fines the lateral or longitudinal contact force fifN at which relative 
slip occurs over the entire region of contact. 
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In [13] the influence of variation in the normalized creep coefficient 
H = 2f/W which occurs during wheelset movement (and associated 
changes in normal contact load and contact geometry) was considered. 
For cases of practical interest the effect on wheelset stability was 
found to be quite small; thus creep coefficient variation is not con
sidered in this presentation, and reference should be made to [13] for 
the details. 

Equations (16)-(20), along with the relations given in [14] for the 
creepage terms, are now combined and yield the equations of motion 
for lateral translation and yaw of the wheelset, written in the following 
form: 

T L 

V b 
-r\\x" - r)%x Sx + 

1/2 Kw(Lr) 

( 1 - 7 ) 

L 
1 HLO 

LKwx2ty + rKw(i + x')) , x2x'(Hw + yWp) 

2(1 - 7 ) 2 
( 1 - 7 ) 3 

+ V 
Feaol\Feao, i (21) 

b0x 
-M = f2 

5 ( 1 - 7 ) 

Vi 

Lrfepgix3 

' 2a053( l - 7 ) 2 (1 • 

rg2X3 

(KT^" - KL
2x') + V2S+(r/L)V^ 

- 7 ) 2 

+ v 

LKuXtp2 + r 
(Hw + y2H„)x^' 

Kp(l - 7) 

S4r/L)1/2\j I£\A \lv-Hr 

lis* W/2IU Fao 1\S+ eao1,2l\Feaa 
(22) 

K„(l - 7)J 

where e2?;i = Fao^lfi, e2rj2 = l/pao112, and v = F2eao3/2/3nnf, and g\ 
and g2 depend on wheel and rail noncircularity as follows: 

ix = Hwb<?(2 - y) + ysC0Wp 

g2 = Ww + y2Hp) 
1L 

-(Hw + yH„)-
l K , ( l - 7 ) 3J 

Depending on the geometry, forward speed, and motion amplitude, 
the terms appearing on the right-hand sides of equations (21) and (22) 
can all be of comparable magnitude. In forming these equations, terms 
have been neglected if they were O{a0) or 0(e) as large as those ap
pearing in equations (21) and (22). A more detailed discussion of 
magnitude assessments of the many nonlinear terms is given else
where [13]. 

In equations (21) and (22) the homogeneous terms are proportional 
to the linear lateral and longitudinal velocities of creep and hence 
describe the wheelset kinematic oscillation. The linear terms in TJI and 
rj2 are the inertia, gravitational, suspension, and spin creep terms 
which describe secondary hunting. Terms in v result from the non
linear variation of creep force with creepage. The remaining nonlinear 
terms arise from nonlinearities in the velocities of creep. 

The nonlinear creep velocity terms are due to several sources, in
cluding the vertical and rolling motions, deviations from V = rd in 
wheelset forward speed, and difference in left and right wheel rolling 
radii. The largest of these terms is O(e2/ao) and is due to rolling radii 
difference, equation (22). For moderate speed and yaw restraint, nt 
= 0(F) and S ,̂ = 0(1), this term may actually be larger than the linear 
static and inertia terms. 

Solut ion of E q u a t i o n s of Mot ion 
We now solve equations (21) and (22) using the method of multiple 

time scales. We consider \l\x and e2 to be small parameters of com
parable magnitude. Hence, the equations of motion are coupled sec
ond-order equations with a small parameter multiplying the highest 
derivative in each (i.e., the equations are of the boundary-layer type). 
Thus there are two linear modes of motion in addition to the kine
matic ones, and these will be of importance in a temporal boundary 
layer near time zero. Wickens [1, 2] has shown that this boundary layer 
is of very short duration, i.e., the additional modes are highly damped. 
We therefore restrict our attention to the effect of the inhomogeneous 
terms on the kinematic oscillation. 

In applying the method of multiple time scales (a detailed de
scription of this method is given by Nayfeh [16]), we assume the 

nondimensional "time" T to be a function of several independent time 
scales, T = T ( T 0 , Th T2,...). Both dependent variables (x, ip) and their 
derivatives with respect to T are expanded in series in the small pa
rameters. 

We consider three time scales, a "fast" one to describe the kinematic 
oscillation, and two "slow" ones to characterize the terms on the 
right-hand sides of equations (21) and (22). The time scales are de
fined as follows: 

r°=by 
1/2 
T = COT 

T i = e2T 

T2=VT 

Here cor/t is the kinematic oscillation frequency. In view of the pre
vious discussion, the linear (secondary hunting) terms and the non
linear creep velocity terms are both described by the same (Ti) time 
scale. 

Expansions for x and \p in terms of the small parameters are as
sumed as follows: 

X = Xo + €2Xi + VX2 + . . . 

\p = \f/0+ (2\pi + V1J/2 + . . • 

The derivatives with respect to T are also expanded, 

d d „ d i> 

(23) 

— = co + t2 — + V—-+. 
dr dT 0 dTi dT 2 

d2 

dT2' an5 ; + 2coe2-
d2 

dTodTi 
- + 2co>/-

d2 

d T 0 d r 2 

(24) 

The magnitudes of the small parameters e2 and v are such that the 
coupling of the two slow time scales produces negligible effect on the 
response, and such coupling terms have been neglected in equations 
(23) and (24); thus, the distinction between T\ and T2 is really arti
ficial. It has been used to retain the distinction between the nonlinear 
creep force versus creepage (v) effects and the effects of nonlinearities 
in the velocities of creep (c2). 

Equations (23) and (24) are substituted into equations (21) and (22), 
and terms of orders 1, e2, and v are equated, yielding three sets of 
equations for the three time scales. For the fast time scale To there 
results 

^0 + ' 
coL dx 

8 dT, 
o 0 
o 

5(1 
xo — co = 0 

•7) a n 
with the solution expressed in the form 

x0 = A(Ti, T2)e<T° + A(Th T2)e-iT» 

io = -iwA(Th T2)e
iT" + iwA(Th T2)e-iT" (25) 

This describes the kinematic oscillation, with complex amplitude A 
a function of the slow time scales, and A the complex conjugate of 
A. 

Using equation (25), the equations for the T\ time scale can be 
expressed as the following second-order equation in xi-. 

d2xx 

OTo2 
+ x, = eiT° 

H?2 

co 

+ 3 

2J 

CO 

r\i/2 

II 
Lrbogi 

h iThco 1 H \ A A 
dTj \ L2) co L2 

+ SX + 
Kw(Lr) 1/2 

1 - 7 
r(Hw + y2H„ 

L 
1 V-LO 

•g2> 

[2a053(l - 7) K„(l - 7 ) 3 

(Hw + 7 3 t fP ) 

( 1 - 7 ) 3 

A2A 

A2A + N.S.T. + cc (26) 

where cc denotes the complex conjugate and N.S.T. denotes nonse-
cular terms (actually, terms in e3iT°). Equation (26) contains secular 
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terms which, if not eliminated, result in unbounded response for xi. 
The secular terms will be eliminated if the coefficient of e'T° is set 
equal to zero; this, in turn, dictates the manner in which A must 
change with T\ in order that the secular terms be eliminated. Letting 
A = (a/2)e'*, where a and </> are real functions of the slow time scales 
T\ and T2, secular terms are eliminated if 4> and a vary with Tj as 
follows: 

d<p 

dTi 

da 

3coa2 

8 

f T h riHl 

2a0<53(l - 7) 

a (Fo;o1/2 

~ 2ixe2\(l-y) 

KT
2 

1 + — i -
L 2 

KL
2 

< 

U + T 

1 

V / 2 

+ -

' 'U KP(l-7) 1 
* , ( 1 - 7 ) 3 

(»„, + ym„) 
3(1 - -y)2 

Ml/2 

r,„(Lr)i/2 ^ L ^ 

(1 - y) \ r 1 

(27) 

(28) 

The relation for d$/dTi indicates that the nonlinear contributions 
to creep velocity result in a shift in the kinematic frequency, given 
by 

0 ) 1 
Lrbogt 

2a0<53(l - T ) 

r(Hw + yW„) 

K„a - T)3 

[4 2L(HW + yHp) 

.3 K„(l - y) 

{Hw + 73ff„)jl 

3(1-7)2 Jl 
where co is the linear kinematic frequency, and oip the perturbed 
frequency. This result indicates that the oscillation frequency is al
tered only if the wheel and/or rail profiles are noncircular. The result 
is valid for "small" noncircularities (Hw = 0(1), Hp = 0(1)) and the 
magnitude of the perturbation is quite small for this case. 

The foregoing relation da/dTi for amplitude variation with Ti 
contains the linear terms which characterize secondary hunting. 
Setting da/dTi to zero and utilizing the definition of Froude number 
in terms of forward speed V enables the linear critical speed Vc to be 
calculated, 

(Lr)i/2(1 - 7 ) 
Sx + S 

m»o 

TL) + 1-7 r 
[, , KT

2 KL
2(l-y) 

1 1 L 2 L2 

"7 "4 
_ 

(29) 

Two effects which are not often contained in this result are the sta
bilizing influence of longitudinal (spin) inertia and the destabilizing 
influence of lateral/spin creep. Since nu is typically of order unity 
[13], equation (29) shows that the lateral/spin creep essentially negates 
the stabilizing influence of gravitational stiffness. Since in practice 
stability is generally achieved through stiff yaw restraint, the inclusion 
of the lateral/spin creep effect in equation (29) may not substantially 
alter the resulting linear critical speed. However, the possibility exists 
that an unrestrained wheelset would be unstable at all forward 
speeds. 

An important result of equations (27) and (28) is that none of the 
nonlinear creep velocity terms appear in the relation for da/dTi. This 
indicates that for the mildly noncircular profiles considered here, 
nonlinearities in the creep velocities affect the frequency, but not the 
stability, of wheelset motion. 

The equations for the second slow time scale (T2) yield the influence 
on the motion of nonlinear creep force variation with creepage. The 

terms which describe this effect in equations (21) and (22) are given 
in terms of the lateral, longitudinal, and resultant creepages, t.i_s> %-LA: 
and £TJ respectively. These creepages are determined to lowest order 
using equations (16), (17), (20), and (25), with the following result: 

C ? I U = ' ( $ ) C | l ( e ' T 0 _ e " ' r 0 ) 

^ = fcj[2(C,2 + C|l2) 

+ (C_L2 - C||2)(e2i7,° + e-2^o)]i /2 (30) 

where 

Cx= Fct0u
2 - Sx •<o2if„,(Lr)i/2(l--ML») 

r 

oao1 /2(L/r)1 /2 

L2 
• KL

2) - S+(r/L) 1/2 

Utilizing equation (30), the equations for the T2 time scale can be 
written as the following second-order equation in %2-

d2x2 

,dTo2 

( C x
2 -

: + x. 
2d2x0 

dTodT2 + 
M 2. Ita\2 

,Fea0l
 l \2nJ 

• |2C±[e 'T° - e-iT° + e3iT« - e''iiT<>} 
C||2)[2(C±

2 + C||2) + (C±
2 - Cf)(e2iT° + e-2^o)]i /2 

+ ( C ± + C||)(e'To - e-''To)[2(C_L2 + C||2) 
+ ( C ±

2 - C||2)(e2'To + e-2.-7V,)]i/2j 

In this equation secular terms arise from the average value under the 
radicals times terms in e'T°. Now the creepages may be viewed as 
tracing out an ellipse in the £_L — £|| plane, with semimajor and semi-
minor axes proportional to C j_ and C g, the largest being the semimajor 
axis. The first bracketed terms, which arise from the variation with 
To of the resultant creepage, are thus proportional to the difference 
in lateral and longitudinal creep magnitudes (C j _ 2 — C||2). We con
sider the case for which the "creepage ellipse" possesses small ec
centricity, i.e., for which d^T/d^o is small. For this case the contri
bution of resultant creepage to secular terms is approximated simply 
by y/2(C± 2 + C|| 2 ) 1 / 2 . The perturbation equation of motion is then, 
with only secular terms retained, 

3%2 

dT0
2 : + x2 = 

1 

2d2x0 

dT2dT0 

Feao/nl \2^, 

fa I2 

\CL + C\t)V2(C±
2 + C||2)1/V' r° 

+ N.S.T. + cc 

Using equation (25) for Xo, the condition for the elimination of secular 
terms is as follows: 

da 

d T 2 ' 

Fao1' 

2/tWU — 7 
1 + 

KT
2 

( 1 - 7 ) 
KL-

«o 
1/2 

, Kw(Lr)V2 J L 

Sx+S+{r/L)"2 

\Z~2ea 

6M/ 
(C±

2 + Cf-)1'2 (31) 

The bracketed term in equation (31) is identical to equation (28). Thus 
the nonlinear creep force variation with creepage serves to amplify 
the linear damping, whether stabilizing or destabilizing, but without 
altering the critical speed of secondary hunting. This is expressed 
quantitatively as 

V ^ a ( C J . 2 + C||2)1/2 
A/VL ~ ^L 1 + ' 

6/Xf 
(32). 

where AL and X/VL are the linear and nonlinear damping factors, re
spectively. This is interpreted physically as a decrease in the relative 
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dominance of the creep over static and inertia effects, due to the "soft" 
nature of creep force variation with creepage, i.e., the effective value 
of fi is reduced in accordance with equation (32). This effect may be 
fairly large for smooth track (6/1/ » 1) and large amplitude motion. 
For example, with e = 0.025 and using typical wheelset properties and 
operating conditions, the damping (or undamping) increase can be 
of the order of 25 percent [13]. 

The solutions just given are valid for nondimensional times T = 
0(l/i»), and this encompasses periods of practical interest. This results 
from the dominance of creepage, such that inertia, static, and the 
nonlinear effects influence the motion on very slow time scales. 

Validity of Linear Creep Formulation 
When the correction factor of equation (32) differs substantially 

from unity, a linear creep model is no longer valid. We now derive 
explicit conditions for the validity of a linear creep force/creepage 
formulation. 

Based on the discussion of Hobbs [17], we consider a linear creep 
model to be valid provided that the spin creep is small and the re
sultant tangential creep force is less than 25 percent of the limiting 
value of friction /i/iV. Since N ~ W/2, this condition may be written 
as fi^r — 0.25/u/. From the relation for £r, equation (30), the maximum 
resultant creepage occurs when d ^ / d T o = 0, which leads either to 
C j . = C\\ or e 2* To : -2iT0 i.e., e 2iT0 : =F1. These two values yield 
maximum and minimum creepages, depending on the relative mag
nitudes of C j_ and C\\. To ensure satisfaction of the validity condition, 
we require simultaneously that 

Fa0 

1 - 7 
Fa0 

.,-Mf^U. 

(I - T)i2 

1-7 

(KT2 _ ( 1 _ T ) K L 2 ) _ S^( r /L)l /2 ' 

« 0.25/i/ (33) 

< 0.25/t/ (34) 

For large amplitude motion on smooth track and moderate speed and 
restraint, these conditions are fairly restrictive. 

Even if the foregoing conditions are satisfied, a linear creep model 
may not be valid unless the spin creep is also small. The experimental 
results summarized by Hobbs [17] and the theoretical results of 
Kalker [18] indicate that a linear creep model is valid, if in addition 
to the aforementioned conditions, the following relation for the spin 
creepage is satisfied: 

Lixu — - — < 0.4*1/ 

where <J3 is the wheelset angular velocity. Using the relation given 
elsewhere [14] for the spin creepage (w-nit)/V, this results in 

eLKw(L/r)W 
•«o + - • « 0 . 4 N (35) 

r (1-7) V-Lf) 

To illustrate the use of these relations, we consider as an example 
the following vehicle/rail parameters and operating conditions. 
Wheelset mass m = 907 kg, W = 133,500 N, V = 61 m/sec, KT/L = 
0.9, KJL = 0.45, Sx = 1, S + = 10, L = 0.762 m, r = 0.533 m, K„ = 
4.92/m, 7 = 0.5, a 0 = 0.05, and fir,o = 0.45. Use of these in equations 
(33)-(35) and selection of the most restrictive condition (equation (34) 
in this case) results in the requirement that e < 0.0067 (maximum 
lateral displacement less than 0.43 cm) for a linear creep model to be 
considered valid. 

Concluding Remarks 
The influence on the lateral motion of a simply restrained wheelset 

of nonlinearities arising from the geometry of wheel/rail contact has 
been investigated analytically for mildly noncircular profile geome
tries. The equations of motion have been derived and solved using the 
method of multiple time scales; the main results of this study are 
summarized qualitatively as follows: 

1 Nonlinear velocities of creep produce cubic terms which may 
be relatively large but which affect only the frequency of wheelset 
oscillation. The frequency is increased by an amount porportional to 
the square of the motion amplitude e2, the profile noncircularity (Hm, 
Hp), and the degree of conformality of contact, 1/(1 — 7). 

2 Nonlinear creep force variation with creepage produces sec
ond-order terms which cause amplification of the linear damping, 
whether stabilizing or destabilizing, but with no effect on critical 
speed. This result arises from a reduction in dominance of creep over 
static and inertia effects due to the soft nature of creep force variation 
with creepage and is valid for small spin creepage. 

3 Conditions for the validity of a linear creep formulation have 
been derived. It appears that for large amplitude motion and con-
formal contact on smooth track, these conditions may not be satis
fied. 
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The Dynamical Characteristics ©f a 
Gyroscope With a Tuned Elastic 
Suspension 
This study investigates the dynamics of a gyroscope rotor, supported on a "heavy" elastic 
suspension, using a mathematical model which allows the gyroscope to be treated as a 
two-degree-of-freedom rigid body on a light suspension. The natural frequencies are func
tions of spin rate and it is shown that the lower natural frequency can be reduced to zero 
by appropriate selection of suspension parameters. In this condition the gyroscope is 
"tuned" and could provide a useful inertial reference. Some problems associated with pre
dicting the tuning speed of a practical gyroscope are highlighted. 

Introduction 
In recent years a class of gyroscopes known as Dynamically Tuned 

Gyroscopes has emerged as a low cost replacement for the floated rate 
integrating gyro which has been the workhorse of inertial guidance 
systems over the past two decades. Of the tuned gyro family the Os-
cillogyro [1] and the Hooke's joint suspended gyroscopes [2, 3] have 
been the most intensively developed and are now capable of matching 
the performance of floated gyroscopes. 

However, alternative designs of dynamically tuned gyro are now 
evolving with potentially attractive advantages over existing designs. 
One such gyroscope, in which the rotor is supported by a flexible 
elastic suspension, was previously studied by Bulman [4] who indi
cated the possibility of tuning the suspension to give favourable 
performance characteristics. 

In this paper the previous analysis is generalised and extended. A 
two-degree-of-freedom mathematical model for the gyro is established 
and the principal dynamical characteristics of the instrument are 
determined. It is shown that rotation of the instrument as a whole 
about any axis perpendicular to the drive axis causes the rotor of the 
gyroscope to deflect relative to the supporting casing in a way which 
depends upon the relationship between the spin and the natural 
frequencies of the rotor and suspension assembly. The response of 
the rotor provides a measure of the applied rotation and is affected 
to a large degree by the dynamical characteristics of the suspension 
elements. The free motion of the gyro is studied and the response to 
steady rates of turn and to harmonic angular inputs is evaluated. 

1 After September 1,1979, Lecturer, Department of Mechanical Engineering, 
Nottingham University, University Park, Nottingham, England. 
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Description of the Instrument 
The main elements of the instrument are shown in Fig. 1. A sym

metrical rotor is connected to a drive shaft by means of an elastic 
suspension which consists of four equispaced radial spokes and a 
circular section axial strut. Built-in connections are provided at the 
rotor and at the drive shaft. 

The masses of the spokes and strut are significant and the sus
pension cannot be regarded as a massless connection which only 
provides elastic restraint between the rotor and drive shaft. It is as
sumed that each element of the suspension may be treated as a uni
form beam. 

The spokes have a thin rectangular section and are free to deflect 
in bending and torsion about axes which are perpendicular to the axis 
of the drive shaft It is assumed that the beams are stiff in bending 
about the axis of the drive shaft. This constraint provides the drive 
to the rotor and prevents translation of the rotor perpendicular to the 
drive shaft axis. 

The purpose of the strut is to prevent translation of the rotor along 
the drive shaft axis. The undeflected strut is aligned with the drive 
axis but is free to deflect in bending about axes perpendicular to the 
drive axis. 

The center of the suspension, as defined by the intersection of the 
center lines of the undeflected spokes and strut, lies on the drive axis 
and is assumed to coincide with the center of mass of the rotor. 

The drive shaft spins the rotor and suspension at a constant high 
angular velocity n relative to the instrument casing. 

The effects of damping are neglected, and the rotating assembly 
is assumed to be dynamically balanced 

Analysis 
The reference axes used to define the motion of the gyroscope are 

shown in Pig. 2. OXYZ is a datum set fixed in the casing of the in
strument. The origin 0 is fixed at the center of the suspension and 
axis OZ is aligned with the axis of the drive shaft. Oxyz are the prin
cipal axes of the rotor at 0 and at time t = zero, they coincide with 
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DRIVESHAFT 

STRUT 

SPOKE 

Fig. 1 Schematic of the gyroscope 

OXYZ. The suspension spokes are fixed to the rotor such that in the 
undeflected position their radial center lines coincide with Oxy. 

The displacment of the rotor relative to the casing is determined 
by a rotation nt about the drive axis OZ, taking OXYZ to OX{Y\Z\ 
followed by rotations 6\ and 82 about OX\ and Oy, respectively. 

It is assumed that the casing is subjected to a rate of turn Q(«n) 
acting about OX and it is the function of the gyroscope to provide a 
useful measure of this angular input. In a practical instrument fl and 
0i, 62 are of the same order of magnitude. 

Since the gyro consists of a rotor connected to a drive shaft by 
means of a "heavy" elastic suspension the general motion will be de
termined by a number of different mode shapes which characterise 
the way in which the suspension vibrates. As rotor motion is used to 
estimate the angular input to the casing, only the asymmetric modes 
of vibration are of interest, the most important of which is the fun
damental mode as shown in Fig. 3. 

The governing equations of motion will now be established via 
Lagrange's equations by assuming deflected forms for the spokes and 
strut which are compatible with the shape of the fundamental mode. 
This mode shape is defined as follows. 

Spoke and S t ru t Displacements. With reference to Fig. 4 con
sider the displacement of an element dx, dy of a typical spoke, spoke 
1 say, when the rotor is given small constant deflections 6\ and 82. As 
a result of rotation 82 the radial center line of the spoke is assumed 
to deflect in bending parallel to axis OZ. The constraints imposed at 
the drive shaft and rotor connections determine the end conditions 
of the deflection curve. Assuming the spoke to be built in at both ends 
the end conditions are 

x = 0, £4 = 0, (dUJdx) = 0 

x=L, Uz = -r0e2, (dUJdx) = - (1) 

Using (1)" the displacement of the beam may be determined from 
conventional beam theory and is given by 

U, = i ( 2 r o - L ) [ - l +(L-3r0). 

SPOKE 1 

Fig. 2 Reference axes 

In addition, rotation di is assumed to produce uniform torsion about 
the center line of the spoke so that line 0'ye, situated at radial distance 
* from the drive shaft connection, rotates about the center line 
through angle de where 

• = BAxIL) (3) 

For small 81 and 82, elastic coupling between bending and torsion 
is neglected. 

The displacement curve of the axial strut is also of the form ex
pressed by (2). By substituting L„ and rs for L and ro (Fig. 4) the de
flections of the strut along OX\ and OY\ may be written 

where 

i ( z ) ; 

Ux = -finite); Uy = 8lgl(z) 

( 2 r s - L s ) [ — +(Ls-3r,)\—\ (4) 

; 82g(x) (2) 

To construct the equations of motion using these mode shapes it 
is necessary to determine the kinetic energy and potential energy of 
the rotor and suspension assembly. 
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Fig. 3 Schematic to illustrate fundamental mode 

Fig. 4 Detail of spoke and strut 

Kinetic Energy. The total kinetic energy of the system comprises 
the sum of the kinetic energies of the rotor, the spokes and the axial 
strut. 

With the aid of Fig. 2 the angular velocity components of the rotor 
along Oxyz may be written 

ux
 = 0i + fl cos ret) cos 02 — n cos 0i sin 02 — A sin 62 sin 8\ sin ret 

uiy = 82 — il sin nt cos 0i + n sin 0i (5) 

coz = n cos 0i cos di + Q. sin nt sin 0i cos 02 

+ (0i + fl cos ret) sin 02 

The kinetic energy of the rotor is 

TR = -Awx
2 + -A(uy

2 + -Caz
2 (6) 

Journal of Applied Mechanics 

where (A, A, C) are the principal moments of inertia of the rotor at 
O. If we make the small angle approximations sin 0 ^ 0 , cos 8 » (1 -
02/2) equations (5) and (6) may be combined to give the following 
quadratic expression for the kinetic energy of the rotor: 

TR = (A/2) [(0i + Q cos nt - re02)
2 + (02 - 0 sin ret + re0x)

2] 

+ (C/2)[n2(l - 0i2 - 02
2) + 2re0xO sin ret 

+ 2re02fi cos nt + 2re0x02] (7) 

Treating the spokes as thin beams the kinetic energy of spoke 1 is 
given by 

Tsi = ̂ - fe2 + vy
2 + v^dxdy (8) 

2 Jo J-h/2 
where c is the thickness of the spoke, p is the density of the spoke 
material, and L and re are, respectively, the length and width of the 
spoke. The quantities vx, vy, vz are the components of velocity of the 
beam element with dimensions dx, dy along OX1Y1Z1 and are 

Vx = ~ny cos ifi\xlL) — [Uz + y sin (0ix/L)] fl sin ret 

vy = n(x + r,) — 8i(xy/L) sin (8\x/L) 

-[Uz+y sin i.8ix/L)]Q cos nt (9) 

,u2 = (dUz/dt) + Q(x + n) sin ret 

+ [dix/L + £2 cos nt]y cos (8\x/L) 

Substitution of (9) and (2) in (8) yields an expression for the kinetic 
energy of spoke 1 which for small 0i and 02 may be expressed as follows 
when third and higher-order terms in 0i, 02 are neglected: 

Tsi = 0i2 / i + 022/2 - 0i2re2/i 

+ fi(0i cos ret + re0i sin ret)/3 + 0(02 sin ret — re02 cos ret)/4 

+ (n2 + 0 2 cos2 nt)h + (re2 + fi2 siri2 ret)/6 (10) 

Integrals /1 to ̂ 6 are defined in the Appendix. Similar expressions to 
(10) define the kinetic energies of spokes 2, 3, and 4. 

Following a similar procedure the kinetic energy due to flexural 
motion of the strut is given by 

Ts = [0i2 + 02
2 + 2re(0!02 - 020i) + re2(0!2 + 02

2)]/7 

+ 12[re(02 cos ret + 0i sin nt) — (81 cos ret 

- 02 sin ret)]/9 + fi2/8 (11) 

where lq, 1%, and Ig are defined in the Appendix and the contribution 
due to the polar moment of inertia of the strut has been neglected. 

The kinetic energy of the total system is therefore given by 

T = TR + Ts + £ Tsi (12) 
;=i 

Potential Energy. Potential energy is stored in the suspension 
as a result of elastic deformation of the spokes and the strut. For small 
rotor displacements the contribution made by the spokes can be ex
pressed as the sum of the strain energies due to bending and torsion 
considered separately. For spoke 1 the potential energy due to bending 
can be written 

VBI = — ( F - r dx + - \ S\—- dx (13) 
2 J o 1 dx2 I 2 Jo \ dx I 

where EI is the flexural rigidity and S is the radial load in the spoke. 
Similarly, the strain energy due to torsion may be written [5] 

• 1 rLhc3Gi hs wae\z , , , 
VTi = - I 1 + — dx 14 

2 Jo 3 I 4Gc3Hdx] 

where G is the modulus of rigidity of the spoke material, and h and 
c are as defined for eqution (8). 

Equations (13) and (14) show that the strain energy stored in the 
spokes is a function of the radial load S. For sufficiently large values 
of S this loading can make a significant contribution to the strain 
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energy. Care is therefore required when interpreting its effect. The 
value of S is determined by considering the preload, the inertia 
loading due to centrifugal action and the nature of the shaft and rotor 
connections to the spoke. If the connections at x = 0 and x = L expand 
by amounts u\ and u% 'due to centrifugal action, then the radial load 
S may be written as 

S = So + Ea(u2-ui)/L 

+ n2(phc/6) [L(L + 3r;) - 3x2 - 6r;x] (15) 

where SB is the initial preload in the spoke and a is the cross-sectional 
area of the spoke. 

Substitution from equations (2), (3), and (15) in (13) and (14) yields, 
for spoke 1 

V B i - [ / « , + » ViJfls2 (16) 

W i = — [4Gc3 + hS'] 0i2 = KTBi2 (17) 
24L 

where S' = S0 + Ea(u2 — U\)/L. 
Integrals /io and I\\ are defined in the Appendix, and the potential 

energies of spokes 2,3, and 4 are defined by similar expressions to (16) 
and (17). 

The potential energy in the strut due to flexure is given by 

Vs = /l2(0!2 + 022) (18) 

where /12 is defined in the Appendix. 
The total potential energy of the system is therefore 

V=Vs+t (VBi+Vn) (19) 
i=i 

Equations of Motion. Although it has been convenient to derive 
the kinetic and potential energies of the system in terms of coordinates 
measured relative to rotating frames of reference, visualization of the 
rotor motion is greatly simplified if the rotor displacements are ex
pressed in terms of the rotations /3i and /?2 taken along the case fixed 
directions OXY. This transformation can be achieved, for small 0\ 
and 02, by resolving 0\ and 62 along OXY so that 

/3i = 6\ cos nt — 02 sin nt 

182 = Oi sin nt + 02 cos nt (20) 

The equations of motion for the gyro now follow on substitution of 
(12), (19), and (20) into the Lagrange equation in the form 

d ldT\ Z>T dV 
— p i - - — + — = 0 i = l , 2 (21) 
dtWi) dft dft 

and may be written 

Ao0i + Cora/32 + [K0 - n2/fi]0i = -F& 

A0$2 ~ C0n$! + [K0 - n2/fi]/32 = F2nQ (22) 
where 

Ao-

c0-
K0 

Ki-

Fi = 

F2 = 

= A + 2I7 

= C + 8/1 

+ 4/i 

+ 8/2 

+ 4/2 

= 4/io + 4KT + 21 u 

= 4 / 2 - 41 

-- A + 2/3 

= C + 4/3 

r n 
- 2 / 4 

- 4 / 4 
-h 

Equations (22) allow the rotor and suspension to be treated as a single 
rigid body, having two degrees of freedom, connected to the drive shaft 
by a massless suspension. 

The quantities Ao and Co represent the transverse and polar mo
ments of inertia of the equivalent rigid body and (K0 — n 2K1) repre
sents the stiffness of the equivalent suspension. KQ is a function of 
the bending and torsional stiffnesses of the nonrotating suspension 

and the radial preload in the spokes. K\ represents the reduction in 
stiffness of the suspension due to the dynamical characteristics of the 
rotating suspension, and includes centrifugal loading effects. 

We shall now examine the dynamical characteristics of the gyro
scope by considering the free motion of the rotor and the response to 
steady and harmonic rate inputs. 

Free Motion and Tuning. The free motion of the gyroscope is 
governed by equations (22) with Q = 0 in which case the rotor dis
placement takes the form 

ft = £ ft' sin (pjt + 8j) 
y=i 

02 = £ \jPj cos (pjt + &j) (23) 

where 
X; = (K0 - n 2 K! - pj2Ao)/(C0npj) 

Pj is a natural frequency of free vibration and fij and Sj are initial 
condition constants. 

Substitution of (23) in (22) yields the following frequency equa
tion 

(nPj)
2Co2 - (K0 - n2Kr - pj2A0)

2 = 0 (24) 

from which 

nC0 nC0 L . 4A0(K0 - n2Kxpl2 

pj=WT'±'^r 1 + 2 7 1 — " ( 2 5 ) 

2Ao 2Ao L n2Co2 J 
For a practical gyroscope driven at high speed we may assume that 
4 AQ(KQ — n2K{)/n2Co2 « 1. This condition allows the following good 
approximations to the natural frequencies to be extracted from 
(25): 

Pi » (K0 - n2Ki)/(Con) (26) 

P2 « (C0n/A0) » pi (27) 

The gyro possesses two natural frequencies. At high values of rotor 
speed that denoted bypi has a long period and is determined by the 
ratio between the equivalent suspension stiffness and the angular 
momentum of the rotor. The second frequency (p%) has a very short 
period and is approximately equal to the nutational frequency of a 
free disk. 

A typical variation of the natural frequencies with spin, n, is illus
trated in Fig. 5 for a gyroscope with zero preload in the spokes and 
having a rigid rotor and drive shaft. When n = 0 the two frequencies 
coincide and have the value p i = P2 = (KQ/AQ)XI2. With increasing 
n the higher natural frequency (P2) increases steadily and approaches 
the asymptote p 2 » (Co«/Ao) as n -» °». 

The lower natural frequency (pi) decreases steadily with increasing 
n and is zero when n has the value 

nt = (Ko/W2 (28) 

at which point the gyroscope is said to be tuned. At this running speed 
the equations of motion (22) show that the suspension has zero stiff
ness and that the rotor will behave as a spinning body which is de
coupled from the drive shaft. From the definition of Kg and K1 it will 
be seen that the tuning speed is a function of spoke and strut pa
rameters only and is independent of rotor inertia. 

The value of K0, and hence the tuning speed, is however markedly 
affected by preload in the spokes. Fig. 6 indicates how nt is affected 
by a range of preloads which might be introduced into the spokes as 
a result of thermal stresses and radial expansion of the rotor and drive 
shaft connection points under centrifugal loading. The tuning speed 
increases rapidly with preload. As will be shown in the following 
section, it is advantageous to operate the gyroscope at the tuning 
speed. The degree of preload in the suspension is therefore a critical 
factor to consider in the design of the gyroscope. 

The mode shapes corresponding to p i and P2 are approximately 
Xi s» 1 and X2 » — 1. The tip of the spin axis thus traces out a circular -
path. In the case of the lower natural frequency (pi) the direction of 
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Fig. 5 Typical variation frequencies (p, and p2) with spin frequency (n). 
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Fig. 6 The effect of spoke pretension on tuning speed; parameter values 
as for Fig. 5 

traverse round the circle depends upon the value of rotor speed. For 
speeds less than the tuning speed the spin axis moves in the opposite 
direction to the rotor spin. For values greater than the tuning speed 
the spin axis moves in the same direction as rotor spin. In the case of 
the higher natural frequency (P2) the motion of the spin axis is always 
in the same direction as the spin. 

If the instrument is tuned in accordance with (28) the free motion 
may be expressed as 

I 8 I = A , I + / 3 I sin (p2t + 5) 

/?2 = JlQ2 - ^1(p2A0/nC0) cos (p2i + 5) (29) 

where j8i, /Joi, p\>2, and 5 are initial condition constants. 
Solutions (29) indicate that if the rotor spin axis is given a steady 

offset at time i = 0 and released from rest, the rotor will maintain the 
initial offset, and will thus behave as if it were connected to the drive 
shaft by a suspension having zero stiffness. 

Response to a Steady Rate of Turn fi. For the untuned instru
ment (n ?± nt) the steady-state response follows from (22) and shows' 
that the rotor takes up a steady deflection given by 

ft = 0 
^ = F2nil/(K0-n

2K1) (30) 

Thus, in response to a constant applied rate about OX, the rotor 
adopts a deflection about OY which is proportional to the applied rate. 
The deflection therefore provides a measure of the applied rate of 
turn. An applied rate about OY would produce a similar response 
about OX. The untuned instrument therefore acts as a two axis rate 
sensor. The response allows the magnitude and direction of fl to be 
estimated by recording the magnitude of the rotor deflection, and the 
axis about which it occurs. 

If the instrument is tuned according to (28) the steady-state motion 
is proportional to the total turn and is given by 

4 (2 / !+ 2 / 2 - J 3 - / 4 ) l 
1-

(C + 8/1 + 8/2) 
fit 

, = 0 (31) 

Thus, in a tuned gyro, the rotor responds about the same axis as the 
input rate, but in a direction which tends to maintain the spin axis 
of the rotor fixed in inertial space. The spin axis does not remain ab
solutely stationary with respect to an inertial reference but moves at 
a rate 40(2/i + 2/2 -I3~ h)l(C + 8/1 + 8/2) in the same sense as fi. 
However, in a practical gyro the polar moment of inertia, C, of the 
rotor is much greater than the equivalent moments of inertia of the 
spokes and strut and the response (31) can be written with good ap
proximation as 

- f i i 

32 = 0 (32) 

The deflection of the rotor is thus approximately equal to the total 
applied turn and the gyro provides a usable inertial reference. 

Response to Angular Vibration. If the gyrb is excited by an 
angular vibration at frequency s about OX such that fi = fio cos (st 
+ e) where flo « n, the solutions to the equations of motion (22) for 
the untuned gyro are 

n [FxiKp - n ^ - s*A0) + F2C0n*)] . , , _ , _ , 
Uns^ TT"Sin (st + e) 

[ ( / f o - n 2 i f i - s 2 A 0 ) 2 - C o 2 n z s 2 ] 

linn COS (St + 6) 
[ ( K 0 - n 2 K - i - S

2 A 0 ) 2 - C o 2 « V ] 

(33) 

The response to angular vibration takes the form of an elliptical whirl 
of the rotor spin axis at the forcing frequency. Resonance will occur 
when the forcing frequency (s) is equal to either of the natural 
frequencies p i or P2. 

If the gyro is tuned according to equation (28), the response (33) 
simplifies and may be written 

miF2Con*-FiAos*] . 

(34) 
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& = Q°n fV 2 2 n 2 21 c o s ( s i + f ) ^ l t\ 
[A0

2s2 - C0
2n2] (Cont.) 

Equations (34) show that in a tuned instrument resonance only 
occurs for one nonzero value of forcing frequency. This frequency 
corresponds to the higher natural frequency, i.e., s - p2 = (nCo/A0). 
The resonance at zero input frequency corresponds to the response 
to a constant applied rate of turn. 

The response of the tuned gyroscope to angular vibration at twice 
spin frequency is of particular interest. Other dynamically tuned 
gyroscopes such as the Oscillogyro [6] and Hooke's joint gyro [7] re
spond to such angular vibration in a manner which is indistinguishable 
from the response to a constant applied rate of turn. This phenome
non, known as "2co-drift," is a source of error which limits the accuracy 
of tuned gyroscopes as inertial references. 

Setting s = 2ra in equations (34), the response of the gyroscope 
considered here is given by 

. fi0 [FiC0 - 4JF1A0] 

2n [4Ao 2-C 0
2] 

ft = 
fio [FiC - F2A0] 

-sin (2nt + c) 

cos (2nt + e) 

(35) 

[4A0
2 - Co2] 

For a practical gyro in which the rotor inertias are much greater than 
those of the spokes and strut the response (35) is approximately 

% . 
• — suf 
2n 

(2nt + e) 

ft»0 (36) 

Comparison of responses (36) and (31) shows that the nature of the 
response to 2ra angular vibration is fundamentally different from the 
response to a constant applied rate. The gyroscope is therefore in
herently free from "2oj-drift" errors. 

C o n c l u s i o n s 
The dynamics of an elastically supported gyroscope consisting of 

a heavy rotor supported by a radial flexure suspension and an axial 
strut has been considered. A mathematical model of the gyroscope 
has been established on the basis of the first mode of vibration of the 
rotor and suspension assembly. Using this model it has been shown 
that the dynamics of the suspension members plays an important role 
in determining the performance characteristics of the gyro. 

The two natural frequencies of the gyro, p\ and p2, have been de
termined and are shown to be functions of rotor speed. p\ decreases 
with increasing n whereas p2 increases. By matching the vibrational 
characteristics of the suspension with the running speed the lower 
natural frequency, p i , can be reduced to zero. In this condition the 
gyroscope is tuned and the rotor behaves approximately as a free 
spinning body. 

In the untuned condition the response of the gyro to an externally 
applied rate of turn takes the form of a steady deflection of the rotor 
from which the magnitude and direction of the applied rate of turn 
can be determined. The gyro acts as a two axis rate sensor. In the 
tuned condition the displacement of the rotor is a measure of the total 
turn of the casing and the gyro provides an inertial reference. 

The response of the gyroscope to harmonic angular excitation has 
been considered. For the untuned gyro resonance occurs when the 
forcing frequency is equal to either of the two natural frequencies. For 
the tuned gyro resonance only occurs for excitation at the higher 
natural frequency. 

Compared with existing designs of tuned gyro the present device 
has favorable response characteristics in the presence of angular vi
bration at twice rotor spin frequency, in that the problem of "2o-drift" 
does not occur. 

Acknowledgments 
The authors acknowledge, with thanks, the finanacial support of 

the Science Research Council (U.K.). 

References 
1 Whalley, R., Holgate, M. J., and Maunder, L., "The Oscillogyro," Journal 

of Mechanical Engineering Science, Vol. 9, No. 1,1967, pp. 55-58. 
2 Hill, A. T., "A Theoretical Investigation Into the Tuned Hooke's Gyro," 

R.A.E. Technical Report 67254, Oct. 1967. 
3 Craig, R. J. G., "Theory of Operation of an Elastically Supported Tuned 

Gyroscope," IEEE Transactions on Aerospace and Electronic Systems, Vol. 
AES-9, No. 3, May 1972, pp. 280-288. 

4 Bulman, D. N., "Dynamics of a Gyroscope With an Elastically Supported 
Rotor," PhD Thesis/University of Newcastle Upon Tyne, Oct. 1972. 

5 Timoshenko, S. P., "Longitudinal Normal Stresses in Twisted Bars," 
Strength of Materials, 3rd ed., Vol. 2, Van Nostrand Reinhold, New York; 1958, 
pp. 288-291. 

6 Ormandy, D., and Maunder, L. "Dynamics of the Oscillogyro," Journal 
of Mechanical Engineering Science, Vol. 15, No. 3,1973, pp. 210-217. 

7 Craig, R. J. G., "Theory of Errors of a Multigimbal, Elastically Supported 
Gyroscope," IEEE Transactions on Aerospace and Electronic Systems, Vol. 
AES-8, No. 3, May 1972, pp. 289-297. 

APPENDIX 
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The Stabilization of a North-Seeking 
Platform Using a Dynamically Tuned 
Hooke's Joint Gyroscope 
The paper shows that the ideally tuned Hooke's joint gyroscope is capable of operating 
as a gyrocompass. The dynamic response of the compass is examined in detail and its ac
curacy as a north-seeking deuice is assessed. It it shown that small amounts of mistuning 
will result in gross errors. The need for precision tuning is eliminated by supporting the 
gyroscope on a single-degree-of-freedom platform. It is shown that if the platform is driv
en via feedback of the gyrorotor displacement in azimuth then the response of the com
bined system is essentially that of the ideal gyroscope. The overall system is insensitive 
to misturning errors and will automatically align the gyrospin axis with true north irre
spective of any initial offset. The effects of damping, mass unbalance, and platform mis
alignment are assessed. 

Introduction 
The tuned Hooke's joint gyroscope has recently found application 

in precision inertial navigation (IN) systems where its function is to 
detect very small angular displacements. When the suspension is 
tuned to the running speed it has been shown in [1, 2] that the gyro-
rotor tends to behave as an inertially free disk. It is this property to
gether with its inherent simplicity and robustness that has enabled 
it to become a serious competitor to the floated gyro for IN use. 

However the free rotor characteristic of the Hooke's joint gyroscope 
will also enable it to find applications in other areas of work. It will 
be shown that if a pendulous moment is applied to the rotor the action 
of the Earth's rotation causes the rotor to move in such a way as to 
indicate the direction of true north. The ideally tuned Hooke's joint 
gyroscope has therefore the capacity to function as a north-seeking 
gyrocompass. 

Compass designs based upon a gyrorotor have long been estab
lished, for example, the Sperry gyrocompass [3] and the ligament (or 
spherical air bearing) suspended pendulous compass [4]. Although 
well established and developed over a number of years the Sperry 
device is still mechanically complex and remains an expensive in
strument. Because of its construction the usefulness of the ligament 
suspension is restricted to surveying work. Although the ligament 
simplifies the suspension and eliminates the need for gimbal bearings 
it lacks robustness and requires an additional system (usually optical) 
to relate the rotor position to the axis of the theodolite's telescope. 
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Because of the wide separation in cost and performance of these 
two devices it is anticipated that the simplicity and robustness of the 
Hooke's joint configuration may offer advantages in this area of ap
plication once the performance characteristics have been identified 
and proven. This paper therefore seeks to evaluate the potential of 
a system that incorporates a Hooke's joint gyroscope operating as a 
north-seeking device. 

Description of Instrument and Equations of Motion 
To form an appreciation of the dynamic chracteristics of a north-

seeking system based upon a tuned Hooke's joint gyroscope it is in
structive to first assess the ability of the ideally tuned gyroscope to 
function as a north-seeking device. The basic sensing element of the 
proposed gyrocompass takes the form shown in Fig. 1. The arrange
ment consists of an axisymmetric rotor supported by a Hooke's joint 
suspension comprising of two identical parallel gimbals phased at 90°. 
Torsional pivots of equal stiffness k are fixed along principal axes in 
the gimbals and provide the means of connecting the rotor to the drive 
shaft. The rotor is therefore free to deflect relative to the drive shaft 
along the axes of these pivots. When the rotor axis is in alignment with 
the drive axis it is assumed that the hinge axes are coplanar and 
coincide with the principal axes of the rotor. 

A drive motor spins the rotor and gimbal suspension at a high an
gular velocity relative to the casing. 

To apply control over the displacement of the rotor it is usual 
practice to provide two sets of torquer coils fixed in the casing. These 
coil sets are mounted along orthogonal axes perpendicular to the drive 
axis and link with a permanent (axisymmetric) magnetic field fixed 
in the rotor. The application of a controlled current through these coils 
provides the means of generating the appropriate rotor torques. 

Fig. 2 shows the gyrocasing axes OXYZ on the surface of the Earth 
at latitude X with OX vertical and the drive axis OZ in the horizontal 
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DRIVE AXIS 

Fig. 1 Two glmbal Hooke's joint gyroscope 

plane at an angle ?? west of north ON. Due to the motion of the Earth 
about its polar axis these axes rotate with angular velocities 

$1 = H sin X 

4>2 = ^ cos X sin 7) 

$3 = 12 cos X cos 7) (1) 

about OX, OY, and OZ, respectively. These angular velocities provide 
the input to the gyro and are central to its function as a gyrocom
pass. 

The displacement of the gyrorotor with respect to OXYZ is derived 
as shown in Fig. 3. Rotor, motion is given by a rotation Pi about OX 
to take OXYZ to Ox\y\Z\ followed by a rotation /32 about Oy\ to Oxyz. 
Axes Oxyz are fixed along the principal axes of the rotor. Since all axes 
in the plane of the rotor can be regarded as principal axes (axisym-
metric rotor) the spin (nt) about the rotor axis Oz can occur without 
rotating Oxyz with the rotor spin. If/3i and 182 are assumed small they 
may be regarded as the transverse deflections of the rotor with respect 
to axes fixed in the casing. 

Using this coordinate system to describe the displacement of the 
gyrorotor the equations of motion for the compass may be deduced 
from the general theory of the Hooke's joint gyroscope as presented 
in [1, 2]. 

(A + ai)/?i + [n(C + 2oi) - J$ 3 ]^2 

+ [(2ft - n V i ) + n$a(C + 2(ci - 0 l ) ) ] f t 

= -(A + o i )* i - n(C + ci)4>2 + Ti 

(A + ai)j82 - [n(C + 2oi) - J$Si 

+ [(2k - n*Ji) + n$3(C + 2(ci - oi))]/32 

= - ( A + ai)*2 + "(C + c 1 ) i 1 + T2 (2) 

where T-y and T2 are the control torques, J = 1A — C and J\ = 1a\ — 

ci-
In other forms of pendulous north-seeking gyroscopes the pendu

losity has usually been provided by a physical pendulum built into 
the device, e.g., the mercury ballistic in the Sperry compass. For the 
Hooke's joint configuration however pendulosity is provided by the 
torquing coils by arranging 

Ti = 0 

T2 = -Kfc (3) 

n U 

Fig. 2 Casing axes 

Fig. 3 Rotor axes 

Ideal North-Seeking Gyroscope 
For the Hooke's joint gyroscope to act as a north-seeking device it 

is first necessary to eliminate the spring and inertia torques trans
mitted to the rotor by the suspension. This condition may be achieved 
if the gyroscope is operated at its tuning speed [1]. From the equations 

168 / VOL. 47, MARCH 1980 Transactions of the ASME 

Downloaded 01 May 2010 to 171.66.16.243. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



of motion (2) the tuning condition is readily identified and can be seen 
to be given by 

2k - nVi = 0 (4) 

If equations (1), (3), and (4) are now substituted into (2) the per
formance of the gyro as a compass can be assessed. We now assume 
Cn » JU, K » Crafl, and A, C » ait a. These conditions can readily 
be realized in practice and allow equation (2) to be written to a good 
approximation as 

A$i + Cn$2 + Cnil cos X cos T;/3I = -CnQ cos X sin r] 

A'$2 ~ Cnfrx + K/32 = CnQ sin X (5) 

from which 

2 

/3i « - t a n i) + Y. 4>j sin (pjt + 8j) 

CrcfisinX 2 ' » . „ Cn pj 
(32 + E Rjtj cos (pjt + 8j); Rj = &- (6) 

K j=l A — Pj A 

Where 4>j and &j are arbitrary constants and pj are the natural 
frequencies of free vibration that have approximate values 

/ K fi cos X cos r) Cn 
— and p 2 ~ T 

(7) 

The results presented in equations (5)-(7) bear a very close rela
tionship to those derived for alternative compass configurations [3, 
4], and show that the rotor motion is composed of a steady offset su
perimposed upon which is a slow compassing mode at frequency p i 
and a high frequency nutational mode at p2-

Since the pendulosity K » CnQ it follows from (6) that the mean 
value of 162 is small and that the steady rotor motion occurs chiefly in 
the horizontal plane. As a result of offsetting the drive axis, an amount 
71 from the north, it is shown that the rotor moves away from its null 
position and tends to realign its spin axis with true north. Thus, 
provided the initial misalignment is small, tan 77 » 77, the rotor will 
provide an accurate indication of north. The alignment is maintained 
by the small pendulous torque K/?2, which is sufficient to precess the 
rotor about its vertical axis as the Earth rotates. 

The shape of the low frequency "compassing" motion about this 
mean position is determined by the factor 

R^y/' CnQ cos X cos 77 

K 

Since 0 < Ri « 1 the tip of the rotor spin axis will be seen to trace out 
an elongated ellipse (major axis horizontal) in a direction opposite 
to rotor spin. Nutation is characterized by RQ, » — 1 and causes the spin 
axis to move in a circular orbit in the same sense as rotor spin. This 
latter motion has very little influence on the workings of the instru
ment. It can only be initiated by an impulsive moment and in practice 
would be quickly damped out. 

The instrument therefore essentially oscillates at the compassing 
frequency p i and in the absence of damping north would have to be 
determined by finding the mean values of successive turning points 
in ft. 

Damping. For one-off north finding applications, such as in 
surveying, the continuous oscillation of the rotor spin axis about north 
is not a limiting factor. However for navigational purposes the oscil
lation is unacceptable and it is necessary to introduce some form of 
damping. This may be achieved by introducing either damping at the 
gimbal pivots as described in [5], or by following a similar procedure 
to that adopted in the original Sperry compass; that is, the damping 
mechanism is provided by a small torque about OX proportional to 
the rotor tilt /32, i.e., Tt = -Kdfa 

If we regard the slow compassing mode as dominant and neglect 
the terms A$i and A$2 in (5) the equation describing the damped 
motion in azimuth may be shown to reduce to 

3i + ~ /3i + P l 2 p V 
Cn 

" P i 2 ' ? - — P i 2 t an X (8) 

This equation represents a damped vibration 

Pi = pV~ f p i ( sin (pldt + 5X) - JJ • 
K 

tan X (9) 

where £ = Kdl2Cnp\ is the damping factor and pid = Pi V l — £2 is 
the damped natural frequency. Once the transient has decayed (9) 
shows that the rotor adopts a steady offset. 

: _^ £ a n X (10) 

The introduction of the damping torque therefore introduces an 
error in indicated north which varies with latitude and is proportional 
to the ratio between the damping torque and the pendulous control 
torque. For example, if we consider the case of the critically damped 
instrument, i.e., £ = 1, the magnitude of this error is 

fCnQ 
tan X sin X 

and, since Cnil/K « 1, can be seen to be small at all but extremely 
high latitudes. In practice however it is usual to calculate this error 
at each latitude and numerically compensate the compass reading. 

Mistiming and Alternative Configuration 
The foregoing shows that the tuned Hooke's joint gyroscope has 

the capacity to function as a gyrocompass provided the spin axis is 
reasonably aligned with true north. However before proceeding to 
develop the instrument further it is worthwhile to consider the limi
tations of the ideal system. In the practical instrument small amounts 
of mistuning, windage friction and mass unbalance will occur and 
these will tend to modify the response (10) of the compass. By 
applying the results presented in [5] to this problem it is straight
forward to show that mistuning and gimbal windage can give rise to 
serious errors. To demonstrate this we shall consider the effects of 
mistuning. If mistuning is present such that 2k — n2J\ = AK 7^ 0 the 
governing equation (8) can be rewritten 

h + ^r'Pi + Pi2d + <r)ft = -Pi2v - Y P l ' t a n X ( 1 1 ) 

Cn 

where a = AK/CnQ cos X. 
The steady response in azimuth corresponding to the rotation of 

the Earth is 

1 / Kd \ 
77 + ^ tan X 

(1 + a) V K I 

(12) 

which shows that the rotor offset from true north is dependent on the 
mistuning. 

For accurate alignment it is necessary to insure a « 1, and for a 
typical gyroscope with a = 0.01 say, this would require the tuning 
speed to be set to within 10~7 percent. This requirement is well beyond 
the tuning requirements of the corresponding inertial instrument and 
cannot be achieved with the speed control systems available to date. 
Thus, at first sight, it would appear that the nonideal device will be 
incapable of operating as a north-seeking compass. Fortunately this 
is not the case and it will be shown how the nonideal instrument can 
be used to control the alignment of a north-seeking platform. The 
response of the combined system is similar to that of the ideal Hooke's 
joint instrument. 

A North-Seeking Platform. It would be advantageous if the 
compass could be developed in such a way as to eliminate the mis
tuning type of error and to seek north irrespective of the magnitude 
of the initial offset. We shall show how this may be achieved by 
mounting the gyroscope on a servo-controlled platform. 

Fig. 4 shows a Hooke's joint gyroscope of the type just described, 
mounted on a horizontal platform which is free to rotate in bearings 
about a vertical axis. It will be assumed that the vertical axis of the 
platform is not precisely aligned with the true vertical. This offset is 
shown in Fig. 5 and is derived from OXYZ by small fixed rotations, 
£ about OY and & about OZ'. The displacement a of the platform (and 
the rotor drive axis) about its vertical axis OX' represents its motion 
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>VKm/i, 

Fig. 4 Platform 

Fig. 5 Platform axes 

with respect to the Earth and is measured from an arbitrary datum 
OZ" displaced an amount r\ from OZ'. Clearly if t = 5 = 0 then 7] would 
represent the initial offset of the rotor spin axis from true north. 

The angular velocities of the gyrocasing and platform are there
fore 

$ i = a + Q sin X — eQ cos X 

$2 = (^ cos X + eQ sin X) sin (JJ + a) — 8Q sin X cos (r) + a) 

$3 = (Q cos X + eQ sin X) cos (?) + a) + 8Q sin X sin (r) + a) (13) 

about OX', OY', and OZ', respectively. 
A torque motor provides the drive and it is assumed that the motion 

of the platform is resisted by viscous friction /t. 
Damping within the gyro arises because of windage and flexure 

hysteresis and will be assumed to be viscous. By following the analysis 
presented in [5] it has been shown that the damping torque applied 
to the rotor may be divided into components due to rotor windage and 
suspension windage and hysteresis and for the case of a gyro with 
identical gimbals phased at 90° takes the special form 

Tn=-(D + d)P2 + nd(l1 (14) 

where D and d represent the damping coefficients associated with the 
rotor and the suspension, respectively. 

Mass unbalance can clearly occur in both the rotor and the gimbals 
in a general way, however for the special application considered in this 
paper the results given in [6, 7] show that its significance can be as
sessed by considering only the axial component of rotor unbalance. 
If the center of mass of the rotor is offset from the center of the sus
pension by a small amount h then gravity will give rise to a rotor 
torque about OY' which is given by 

Tb = -Mgh (15) 

where M is the mass of the rotor. 
If torques (14) and (15) are now combined with the rotor control 

torques and the input rates (13) substituted into (2) the equations of 

motion of the rotor are written, for large rotor inertias and small angles 
as 

A'$! + (D + d)fri + Cn$2 + {AK + CnQ cos X]/?i + (Kd + nd)fc 

« —Aa — CnQ, cos X (TJ + a) + 8CnQ sin X 

A$2 +(D + d)@2 - CnPi + K$2 - nd/3! 

» Cn(Q sin X + a) - eCnil cos X - Mgh. (16) 

A third equation is required before the dynamics of the total system 
is completely defined and this follows from consideration of the 
platform torques and the angular momentum of the platform and 
gyroscope assembly. If gimbal inertias are neglected the equation of 
motion of the combined system about OX' follows from Euler's 
equations and may be shown to be given by 

(A + I)a + A'$i + Cn(32 + CnQ cos X/?i + CnQ cos X(?J + a) 

~Tm- na + SCnfl'sin X (17) 

To illustrate the essential north-seeking capacity of the system we 
have assumed t"hat the initial offset, tj, is small so that linear theory 
can apply. For large values of rj the system can be shown to retain its 
north-seeking action. 

We now arrange the motor torque Tm to act on the platform in such 
a way as to allow the platform to follow the motion of the spin axis in 
azimuth. This strategy will attempt to maintain the alignment be
tween the drive axis and the rotor spin axis and is achieved by setting 
Tm = Kmj3i. It will be assumed that the motor gain parameter Km is 
large and comparable with the pendulosity K, and therefore Km » 
AK, CnQ. Also since the rotor operates in an evacuated environment 
and the pivots manufactured from low hysteresis material the 
damping will be small and we can further assume that K, Km » nd. 
Furthermore since only the low frequency motion of the compass is 
significant it is legitimate to ignore the terms involving $i, p2 and a 
in much of the analysis. Thus equations (16) and (17) may be reduced 
correspondingly, from which it can be shown that the motion of the 
platform can be expressed in the form 
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a « otoe x">e/c + aie (pit s m (pldt + 81) — T] 

(CnQ sin X — Mgfe — eCnQ cos X)(K^ + nd)(Km — Crefl cos X) 

CreO cos X[K(Km + AX) + rad(Kd + rid)] 

+ o tan X. (18) 

where the damping factor £ is now given by £ = (-fQ + nd)/2Cnp\. 
Since it is likely that Kml\i » £pi equation (18) shows that the 

transient response of the platform is determined by the compassing 
mode of the ideal compass. We should note that the damping factor 
is increased by an amount proportional to the suspension damping 
and that rotor windage does not have a first-order effect on the decay 
of the vibration. In the steady state the platform approaches true 
north but is offset, as shown in (19) by amounts determined by the 
damping, the rotor unbalance and the vertical misalignment of the 
platform; i.e., 

(Kd + nd) x N , gMh 
ae ~ tan X -\ -

K CnQ cos X 

K K 

The form of the damping error is virtually unaffected by the in
troduction of the platform and the restrictions described in the sec
tion, "Damping," would apply in this case. The error introduced by 
mistuning has been totally eliminated and, since Km » AK allows 
for considerable mistuning, precise tuning of the gyro is not necessary. 
The error corresponding to axial mass unbalance is a function of lat
itude but is principally determined by the factor Mgh/CnQ,. By careful 
balancing this factor can be made very small, for example in the tuned 
gyro used for inertial navigation purposes it is possible [8] to achieve 
a level of balance which insures that gMh/CnQ < 0.01. This result 
together with the fact that (Kd + nd)/K « 1 insures that the error due 
to axial mass unbalance will be small at all but extremely high lati
tudes. Similar reasoning shows that small vertical misalignments of 
the platform axis due to a rotation c about the E — W axis causes a 
small error in indicated north. However a significant error could be 
introduced as a result of a platform displacement 5 about the N — S 
axis. This error is directly proportional to 8 and increases with lati
tude. In this situation careful alignmept is necessary. 

Conclusions 
It has been shown that the basic Hooke's joint gyroscope can be 

made to perform as a north-seeking device provided the suspension 
is precisely tuned and if appropriate pendulous control torques are 
applied to the rotor. The response characteristics are similar to those 
exhibited by alternative designs of gyrocompass and the rotor is shown 
to align its spin axis along the direction of true north provided any 
initial offset is small. 

However, the performance of the basic configuration is shown to 
be so sensitive to tuning errors that the required control over spin 
frequency would be beyond the capabilities of present day speed 
control systems. 

A more practical design was then proposed, based on a Hooke's joint 
gyroscope mounted on a stabilized platform. The dynamical perfor
mance of this system has been evaluated, taking account of damping 
and mass unbalance in the gyro, and misalignment of the platform. 
By driving the platform about a vertical axis using control torques 
generated by the azimuth displacement of the gyrorotor it has been 
shown that the gyro driveshaft can be automatically aligned with 
north, irrespective of its initial offset. The platform therefore, after 
the decay of the compassing mode, provides a stabilized direction 
which indicates true north. The arrangement is shown to be insensi
tive to mistuning provided the platform gain Km » AK. Since this 
requirement is easily achieved the need for precision tuning to an 
order AK « CnQ is not necessary. Errors associated with damping, 
mass unbalance, and misalignment of the platform axis from the 
vertical are identified and quantified. These errors, in general, will 
be small, with the exception of the error due to vertical axis mis
alignment which could be minimized by appropriate operating pro
cedures. 
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In troduc t ion 
In a series of publications [1-21], the present author and others have 

exploited the power of Lagrange's equations and the use of Lagrange 
multipliers to study the dynamics of interconnected systems in terms 
of their several components. Studies to date have emphasized linear, 
conservative systems although Klein and Dowell [13] and Hallquist 
and Snyder [14] have shown how, from a knowledge of modal damping 
of individual components, one may calculate modal damping of the 
total system of interconnected components. Here the method is ex
tended to nonlinear and nonconservative systems. No attempt is 
made to develop a general formal theory, but rather the method is 
used in rather specific contexts to suggest the potential of the method 
for dealing with nonlinear and nonconservative systems. The next 
logical step would be the development of such a theory, which would 
appear within reach based upon the present approach and results. 

There is a very substantial literature on variational methods for 
nonlinear and/or nonconservative systems, e.g., see references [22-31]. 
However none of this literature addresses the question of component 
mode synthesis or even constraints (with or without Lagrange mul
tipliers). Nevertheless the reader will find this literature of intrinsic 
interest as well as helpful in placing the present work in context. 

N o n l i n e a r S y s t e m s 
As a concrete example, consider a beam connected to a spring-mass 

, system (Fig. 1). The spring is taken as a nonlinear element. 
The kinetic and potential energies are 

2 £ i 2 
1 / 1 

2 / t i 2 

(1) 

(2) 

where z is the spring-mass deflection and w, the beam deflection, is 
, expressed in modal form as 

w(x,t) = £ ai(t)tpi(x) (3) 
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Fig. 1 A simple combined dynamical system 

to; are the natural frequencies of the beam alone, coz the natural fre
quency of the spring mass alone, and e the nonlinear stiffness coeffi
cient. The constraint equation which states the beam and spring-mass 
are connected is 

f = T.ai<t>i(x = xz) -z = 0 (4) 

The Lagrangian is 

L = T-V + Pf 

where fi is the Lagrange Multiplier. 
Lagrange's equations provide 

Mi[di + 0);2a;] - (iQiix = Xz) = 0 

M[z + wz
2z) + fz3 + j8 = 0 

(5) 

(6) 

The method of harmonic balance [32] will be applied to equations 
(4)-(6). Assuming simple harmonic motion (only the fundamental 
harmonic is retained in this simplest version of the theory), let 

z = Real Part \zeiat) 

a ; = a;e" 

Substitute (7) into (4)-(6) and 
»2TTA) 

(7) 

' The results are 

X 27T/U 

[(4), (5), (6)] cos wtdt = Q 

£ a ; < f r f e ) - z = 0 (8) 
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M,[-o> 2 +o) i 2 ]a , - /30 ,U,) = O 

M[-o>2 + a>2
2]2 + ez3 - + J3 = 0 

4 

Solve for /3 in terms of z from (10) 

-M[-o>2 + o)z
2]z - f z 3 -

4 

Using (9) and (11), 

P<t>i(xz) 

' M;[-0)2+0);2] 

—M[—O)2 + 0)2
2]z — 6Z 3-

4 

M;[-0)2 + o>;2] 

(9) 

(10) 

(11) 

(12) 

(12) in (8) gives 

- M [ - O J 2 + o)z
2]z - ez3 ' 

fc2(*.) 
'Mi[-0) 2 +0); 2 ] 

- z = 0 (13)1 

Define 

€ = — a, z = z/zo, m = Mi/M 
zo2 

where a is nondimensional and Zo is a scaling of the oscillation am
plitude. Then (13) becomes 

D = — [—o)2 + o)2
 2]z — (i>z

2zsa-

4>i2(xz) 
- r 2 A 2i z" = 0 ( 1 4 ) 

; H; [ -0) 2 + 0);2], 
To determine the natural frequencies from (14), the computational 

procedure is as follows: 
Specify /*;, o);, wz, a, and z. Plot Z) versus w to find the nonlinear 

eigenvalues, o), which make D = 0. Note that one may select a = 1 
without loss of generality for a hardening spring. For a softening spring 
one may choose a = — 1. Also it is convenient to scale all frequencies 
by the fundamental frequency of beam alone, w\. Finally, note that 
for z « 1, the known linear theory result is retrieved from (14) 
[20]. 

Numerical Examples. Consider a simply supported beam for 
which 

o);/o)i = i2 

i(xz) = sin-
a 

dx ma Mi ma p" dx ma 

M M Jo a 2M 

In the numerical examples below, /z; is set equal to unity. 
In Fig. 2, the fundamental mode natural frequency of the total 

system is plotted versus the spring-mass oscillation amplitude for a 
ratio of spring-mass component natural frequency/beam component 
fundamental natural frequency, o)2/o)i, of 2 and various positions of 
the spring-mass, xz/a. As can be seen the strongest effect of the 
spring-mass nonlinearity is when the spring-mass is placed at beam 
midspan. Of course, there is no effect when the spring-mass is placed 
at the end of the beam. 

In Fig. 3, similar results are shown for several 0)2/0)1 and one posi
tion of the spring-mass, xja = 0.5. As expected the total system 

1 A result for arbitrary time-dependence (which does not require the har
monic balance method) may be obtained by solving (6) for /3 in terms of z and 
(5) for a; in terms of 0. Substituting the results into (4) gives a nonlinear in
tegrodifferential equation for z. This equation per se is exact and may be at
tacked by standard methods including the method of harmonic balance. Using 
the latter on this integrodifferential equation and retaining only the lowest 
harmonic would produce (13). 

1.0 2.0 

(D/O), 

Fig. 2 Fundamental frequency versus motion amplitude 

Fig. 3 Fundamental frequency versus motion amplitude 

fundamental mode frequency is less than or greater than unity as 
o)2/o)i is less than or greater than one for small oscillation amplitudes 
[20]. However, due to nonlinearities the total system frequency which 
is less than unity for small amplitudes may exceed unity for larger 
ones. 

Discussion. The attentive reader will have noted that equations 
(13) and (14) include all of the beam modes. That is, the combined 
system of the beam plus spring-mass has an infinity of degrees of 
freedom. The power of the component mode synthesis procedure 
using the Lagrange multiplier technique as employed here (and pre
viously [1,11-13,15-20] for linear, conservative systems) is that an 
infinite-degree-of-freedom system can be described by a much smaller 
number of equations. In the example treated above the nonlinear 
component is a single degree of freedom, i.e., the spring-mass. Hence 
it has been possible to reduce the infinite system of equations (8)-(10) 
to a single (nonlinear) equation, (13) or (14), while still retaining all 
of the (infinite) beam degrees of freedom. This can be generalized as 
follows. For a number, say N, single-degree-of-freedom nonlinear 
elements or for a nonlinear element of JV degrees of freedom which 
is equivalent to N single-degree-of-freedom elements, a reduction to 
N nonlinear equations is possible. For a system with a continuous, 
nonlinear element with an infinity of degrees of freedom, such a re
duction cannot occur. However, another idea has proven attractive 
as one way to resolve this dilemma. Often only the lower modes of a 
continuous, nonlinear element will exhibit significant nonlinear be
havior. Of course one may use this to approximate such an element 
by a finite number of modes, say N. However in fact one can do better 
than this. All of the modes above N may be retained with nonlinear 
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terms in these modal coordinates neglected. Using component mode 
synthesis techniques the linear modal coordinates may be eliminated 
in terms of the nonlinear modal coordinates, and thus a reduction 
achieved. 

A few words concerning the choice of the fa in equation (3) may be 
helpful. The natural modes of the unconstrained beam have been 
used. These have several advantages. 

1 For a linear (but unfortunately not for a nonlinear) system, 
convergence is assured as the number of fa retained is increased. In 
practice numerical convergence studies will be desirable for any ap
plication even when a formal convergence theorem exists. 

2 The orthogonality of the fa allows each of the beam modal 
coordinates, a;, to be solved readily in terms of the Lagrange multi
plier, /3, and hence the nonlinear element modal coordinate, z; see 
equations (5) and (6). This is because these fa uncouple the a; per se 
and the o; are thus only coupled indirectly through their common 
dependence on (3 and subsequently z. This is a major computational 
advantage and is essential to the subsequent reduction of the infinite 
system of equations, (4)-(6) to a single equation (14). Because, fun
damentally, the method is a Rayleigh-Ritz approach with constraint 
conditions, the fa only need be complete and satisfy geometric and 
not natural boundary conditions. However the use of natural, un
constrained modes is superior for the reasons just cited. 

3 Once the reduction to a single equation in one unknown has 
been achieved, equation (14), the retention of any reasonable number 
of unconstrained beam modes, fa, is feasible. Very little computational 
cost is associated with retaining additional fa in the present method 
because additional fa o n l y increase the number of terms in (14). In 
the present calculations ten fa were retained even though preliminary 
calculations suggested that half this number would provide results 
indistinguishable from those shown in Figs. 2 and 3. 

4 The present method, using the suggested fa, has reproduced 
known solutions for linear problems where independent, exact results 
are available; for example, see references [1 and 11]. Unfortunately 
nonlinear examples solved by other methods have not been found 
which provide a true test of the present method. Clearly the finite-
element method, for example, could provide such an independent 
check. Of course, as discussed in reference [12], the present method 
from a fundamental point of view may be said to include the finite-
element method (or vice versa, if one prefers). 

The aforementioned ideas can be embedded in a formal theory and 
this will be done in subsequent work. However the essence of the 
matter is as described here. 

N o n c o n s e r v a t i v e S y s t e m s 
For definiteness, consider the physical problem of an elastic plate 

embedded in an otherwise rigid surface; see Fig. 4. Over the top of the 
plate there is a uniform, high supersonic fluid flow. The equation of 
motion is [33] 

d4w d2w U2 

D -+m—-+ p— 
dx4 dt2 M 

dw 1 dw 

dx U dt 
0 (15) 

where w is the plate deflection, x is the spatial coordinate, t is time, 
D is the plate stiffness, m is the plate mass/length, p is the flow den
sity, U is the flow velocity, and M is the Mach number. Assuming an 
eigensolution of the form 

w = fa(x)ei":t 

(15) becomes in nondimensional form 

fa"" + \fa' + kifa = 0 

(16) 

(17) 

where 

X = pU2a3/MD, 
dx/a 

and the eigenvalue is 

^ _ ^ + . j ^ p ( M / X M ) i / 2 

~P^ 

.///// r 
/ 

ELASTIC 
PLATE 

"\ \ \ \ \ \ 
\ 
\ 

where 

Fig. 4 Elastic plate and flow geometry 

fi = palm 

and a is the plate length. 
The adjoint to equation (17) is 

**"" - \fa*' + ktfa* = 0 (18) 

and satisfies the same boundary conditions. Equations (17) and (18) 
have common eigenvalues, ki, but different eigenfunctions, fa and 
fa-*, which nevertheless satisfy an orthogonality relationship of the 
form 

i fa*<t>jdx = 0 for i 7± j (19) 

Consider now, for example, a constraint of zero displacement such 
that 

w(x2, t) = 0 (20) 

From (20) and an expansion of w in terms of eigenmodes, 

w(t,xz)= Y. Qi<l>i(Xz) = 0 (21) 
i=i 

and 

w(t,xz) = Z Qi*4>i*(xz) = 0 (22) 
;=1 

Now let us invoke Hamilton's principle, including the constraint 
relation and variation of w expressed in terms of adjoint eigenmodes. 
First, Hamilton's principle reads 

Ct*[(8T-5V) + &W]dt = 0 (23) 

where 

V = 

l~ rmM2 

2 J o \dt} 

~ C n (d2wY 
2 Jo U*2/ 

dx 

dx 

bW = - $pbw dx 

and the aerodynamic pressure loading, p , is given by 

pU2 

' M 

dw 1 dw 

dx U dt 

(24) 

(25) 

The Euler-Lagrange equation obtained from the foregoing is, of 
course, equation (15). The natural boundary conditions also are ob
tained from Hamilton's principle in the usual way. 

Now add to Hamilton's principle the constraint relation 

f'2 [(ST - 8V) + 8W+ P5w(xz, t)]dt = 0 (26) 

Inserting (24) and (25) into (26) and also using 

w = Z Qi4>i (27) 
i 

and 
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8w = Y. b~qi*<t>i* (28) 

one obtains after integrations by parts, invoking the geometric and 
natural boundary conditions, assuming simple harmonic motion, and 
nondimensionalizing, the following equation 

r £<7i[0i""+A<fc' + J £ «?>•*/ dx 

where ft is as ft; with co; replaced by a). 
Equation (29) may be simplified using equation (17) to 

ZY.(-ki + k) \£M/ dx qihqf 

+ PT, <t>j*(x2)bqj* = 0 
i 

(30) 

Employing the usual arguments [34] about independence of / - 1 
of the qj* and employing the freedom to choose the Lagrange multi
plier, /?, each coefficient of each 5<j,* can be equated to zero. Thus 

Z<j;(-ft; + ft) C" frtfdx + fi<l>j*(xz) = 0 (31) 
i=i J o 

for each; = 1 , . . . , / . 
However, invoking orthogonality as given by equation (19), equa

tion (31) may be simplified to 

qj{-kj + k)Mj + P4>j*(Xz) = 0 

for each j = !,...,! where 

(32) 

Mt= C" 4>i4>i* 
Jo 

dx 

Equation (32) combined with equation (21) gives/ + 1 equations for 
I + 1 unknowns, q\, q2, • • • , qi, and f}. 

Solving (32) for qt in terms of (3 and substituting the result into (21), 
gives 

ffZ ' r, , , = 0 (33) 
i=i Mi[ki - f t ] 

For nontrivial solutions, /3 ^ 0, we require that 

£ <l>i*(xz)4>i(xz) 

£^771—rr=0 (34 

;=i Mi[kt - f t ] 
For the present case, the eigenmodes are complex conjugate and 

thus (34) has some further simplifying properties, but these are not 
pursued here. Rather it is emphasized that the final result holds for 
any eigenvalue problem governed by a linear differential and/or in
tegral operator. With respect to the latter, the discussion of Courant 
and Hilbert [35], Vol. 2, pp. 234-237, is helpful background reading. 
The more recent literature of Leipholz and others [22-31] is most 
relevant here. The result of (34) is formally analogous to that obtained 
for self-adjoint systems [20], except, of course, both the eigenmode 
and its adjoint appear in (34). Also here the ft; are, in general, complex 
numbers and the M; need not be positive real numbers. 

Whether (34) will be of practical computational value, as is its 
self-adjoint counterpart, remains to be seen. Its primary value may 
be conceptual rather than computational. That is, it demonstrates 
that the method of component mode synthesis is.not limited to con
servative, self-adjoint systems, but may be extended to nonconser-
vative, nonself-adjoint systems as well. Implicitly in the foregoing the 
completeness of the 0; and <j>i* has been assumed as has the conver
gence of the method. These matters deserve attention, but in practice 
the choice of 0; as natural modes of the unconstrained system is the 
obvious one and a numerical study of convergence will always be de
sirable even if there is a formal mathematical assurance of (eventual) 
convergence. 

Concluding Remarks 
The extension of the present analysis for nonlinear systems to 

consider multiple nonlinear elements is straightforward. However, 
the numerical computation will then involve the determination of the 
eigenvalues from several simultaneous nonlinear algebraic equations. 
It also would clearly be of interest to consider higher harmonics in the 
motion even for a system with a single nonlinear element. 

For nonconservative, but linear systems, the central question is 
whether there is some computational advantage to the present for
mulation. If there should prove to be such, then it would be of interest 
to consider systems which are both nonlinear and nonconservative. 
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Modal Identities for Elastic Bodies, 
With Application to Vehicle 
Dynamics and Control 
It is a standard procedure to analyze a flexible vehicle in terms of its vibration frequencies 
and mode shapes. However, the entire mode shape is not needed per se, but two integrals 
of the mode shape, pi and hi, which correspond to the momentum and angular momentum, 
in Mode i. Together with the natural frequencies to;, these modal parameters satisfy sev
eral important identities, 25 of which are derived in this paper. Expansions in terms of 
both "constrained" and "unconstrained" modes are considered. A simple illustrative ex
ample is included. The paper concludes with some remarks on the theoretical and practi
cal utility of these results, and several potential extensions to the theory are suggested. 

1 Introduction 
It is well known that great strides have been made in the last two 

decades in structural dynamics calculations. This increase in so
phistication has made possible the accurate modeling of structures 
whose distributions of inertia and stiffness are quite general. Of the 
many applications for this capability, the one of principal interest in 
this paper is the dynamics and control of flexible vehicles. As a class, 
vehicles have a number of characteristics that distinguish them from 
more conventional ground-based structures, the most obvious one 
being the existence of "rigid-body" modes. Rigid-body modes (or 
"rigid" modes, for short) consist of uniform translation, or rotation, 
of all, or part, of the vehicle. The generalized stiffness associated with 
these modes is zero because no elastic deformation occurs. A rigid 
mode therefore has a "natural frequency" equal to zero. 

Virtually all vehicles are intended to be as rigid as possible, and only 
cost and weight considerations dictate some degree of structural 
flexibility. Therefore the rigid modes can be identified with the nor
mal, desirable functioning of the vehicle, and excitation of the elastic 
modes (modes of vibration) represents an undesirable disturbing 
effect. In practice, these effects can range from quite negligible os
cillations superimposed on normal (rigid) motion, to catastrophic 
instability. Many of the most interesting examples occur with 
spacecraft [1], whose diversity of configurations and typically light-
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weight structures have led to major advances in the dynamics and 
control of flexible vehicles [2, 3]. In parallel, and apparently inde
pendently, the dynamics of deformable aircraft has continued to 
develop [4], with the prediction and control of aeroelastic phenomena 
as the main goals. Elastic deformations of ships—both surface vessels 
and submarines—can also be important under certain circum
stances. 

In all cases, the dynamical interest centers on the interaction be
tween the translational and rotational motions of the vehicle (rigid 
modes) and the structural dynamics (elastic modes). In general, some 
of the energy, momentum, and angular momentum of the system will 
reside in the deformational degrees of freedom. This suggests the 
definition of a modal momentum coefficient p; which, when multi
plied by qi(t) (where qi is the generalized coordinate associated with 
the ith elastic mode), produces the momentum contributed by the j'th 
mode: p;g,(i). The modal parameter p, can be calculated once the ith 
mode shape is known. A flexible-vehicle dynamicist therefore requires, 
in addition to the natural frequencies (&>,-), appropriate modal mo
mentum coefficients |p,j. This paper is concerned with identifying 
these modal momentum coefficients, showing how they arise quite 
naturally in the dynamics of flexible bodies, and, most importantly, 
with establishing many identities among the modal parameters, in
cluding the \pi\. 

Two general approaches will be employed. In one, the elastic de
formations are expanded in terms of the natural modes of individual 
elastic parts of the vehicles. These are termed constrained modes [5] 
because the point of attachment to the remainder of the vehicle is 
constrained not to move during the calculation of these modes. In the 
literature on flexible spacecraft dynamics, constrained modes are the 
most frequently used. The other modal expansion, in terms of un
constrained modes [5], is directly in terms of the natural modes for 
the vehicle as a whole. This is the normal practice in the analysis of 
flexible aircraft [4]. Many of the identities derived below relate un
constrained modal parameters to constrained modal parameters. 
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J u(r) 

" ^ f " , UNDEFORMED 

Fig. 1 A single cantilevered elastic body 

To lend more prominence to the principle results of this paper, 
identities are labeled alphabetically as they are derived. Most of these 
occur in Sections 4, 6, and 7. Section 8 illustrates some of the identities 
with a simple numerical example, and Section 9 discusses several of 
their applications, both analytical and numerical. 

2 Cons tr a ined E las t i c B o d y , 8 
Consider the elastic body & shown in Fig. 1. We will presently take 

(> to be all, or part, of a flexible vehicle. It is fixed rigidly at point 0 
so that neither translation nor rotation is possible at 0. We assume 
that in response to a distributed static force/volume f(r), the structure 
experiences static deformations u(r). Thus a volume element of ma
terial found at r in the absence of any force is found at r + u(r) when 
f(r) is applied. Under the assumptions of linear elasticity and small 
deformations, f (r) and u(r) are related by a linear stiffness operator 
£ as follows: 

#[u(r)]" = f(r) (1) 

It is well known (see, for example, Meirovitch [6]) that S is, under 
present assumptions, a self-adjoint operator. Because f> is constrained, 
$ is also positive-definite. It therefore has an inverse operation 3 = 
S~l, called the flexibility operator, which is also self-adjoint and 
positive-definite. 

S is typically a differential operator, while ? is an integral operator. 
We include the boundary conditions as part of the symbol <P. In fact, 
5f can be represented as follows [6]: 

u(r) = 5f[f(r)] = £ F(r, £)f(£)df (2) 

where F is, in turn, symmetric and positive-definite. Thus 

f f fr(r)F(r, £)f(£)drd£ > 0 (3) 

for all f(r) except f = 0, and 

F r ( { , r ) = F(r,{) (4) 

The function F is called by many names, including Green's function, 
induction function, and flexibility influence function. We shall refer 
to it as the flexibility kernel. 

It is noted for completeness that the strain energy stored in S is 
given by 

V- V2 f uTS[u]dt (5) 

which leads to the physical interpretation of self-adjointness and 
positive-definiteness. 

3 N a t u r a l (Constra ined) Modes of V ibrat ion for 6 

We turn now from statics to dynamics. The new information needed 
is the mass distribution, which is denoted by <r(r), the volume mass 
density of r. In accordance with the philosophy of d'Alembert, we write 
the total force at r as a superposition of the inertial "force" and real 
external forces, le: 

f(r, t) = -<r(r)ii(r, t) + fe(r, t) (6) 

Generalizing a standard development to three dimensions, the elastic 

body 6° has a motion that can be written as a superposition of natural 
modes of vibration. These constrained modes preclude translation 
and rotation at O. Thus 

u(r, t)= T. Uj(r)Qj(t) 
7 = 1 

(7) 

where U/(r) is the shape of the j'th constrained vibration mode, and 
the modal coordinates Qj satisfy 

% + Slj2Qj = ?j(t) (8) 

where \Qj\ are the (constrained) natural frequencies, and (Ty) are the 
modal forces defined by 

T ;-(t)= f UjT(r)U(r,t)dr (9) 

The constrained-mode eigenvalue problem is expressible in either the 
differential or the integral form: 

#[U;(r)] = Q7-Mr)Uy(r) (10) 

U;(r) = % 2 P F(r, f)U;({M$)d£ (11) 

and the corresponding orthonormality conditions are, in three di
mensions, 

f UiT(r)U|(r)cr(r)dr= 6y (Kronecker 5) (12) 

U;r(r)^[UJ(r)]dr = n,-25ij- (13) X 
The motion of & must be resisted by a reaction force FR and torque 

G/j on 6 at 0 in order to maintain the constraint that there be no 
translation or rotation at 0: 

u(0, 0 - 0 ; Vu(0,t) = 0' (14) 

(The rotation at a point r in f, is defined to be l/2Vu(r, t), where (•) is 
the skew-symmetric 3 X 3 matrix associated with the vector cross 
product.) It follows that F(0, J) = 0 and VF(0, £) s o, and similarly for 
the modes: Uy(0) = 0, VU,-(0) = 0. From (6), the reaction force and 
torque at O are 

-Ffi(t) = f f(r, t)dx = F - £ PjQj (15) 

-GR(t) = f rf(r, t)dt = G - £ HJQJ (16) 

where 

F(t)= Cle(r,t)dr; G(t) = Ctte(r,t)dr (17) 

pi - J U/(r)o-(r)dr; H, = C rUj(r)a(r)dt (18) 

The constants \Pj] and {Hy| will be called, respectively, the modal 
momentum coefficients and the modal angular-momentum coeffi
cients. This name is derived from the fact that the momentum and 
angular momentum of 6 are, respectively, "SiPjQj and 2H,-(Jy. 

The kinetic energy of the motion is 

T = % T v^v«7(r)dr = % £ Q^ (19) 

where v(r, t) - u(r, t), and the stored strained energy is, from (5), 

(20) 

where the orthonormality conditions (12) and (13) have been im
posed. 

4 Ident i t i e s Invo lv ing Cons tra ined Modal 
P a r a m e t e r s 

Attention is now drawn to a series of identities involving the mode 
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shapes |Uy!, the frequencies |fiy), and the modal momentum coeffi
cients, |Py) and |Hy). The usefulness of these identities will be illustrated 
in Section 8. To cite the first identity, we note that the flexibility 
kernel can be expressed in terms of the mode shapes 

F(r, £) 
Uj(')UjT(& 

Qj2 
(A) 

This is a generalization to three dimensions of a standard result 

[7]. 
Identities for (Qj). A second group of identities relate the natural 

frequencies jOy) to the distributions of inertia and flexibility, a(t) and 
F(f, £)• The simplest member of this group is the following identity: 

h cij2" 
trace f F(r, t)a-(i)dt (B) 

To prove this result, one has only to substitute (A) into (S), and in
voke (12). It is furthermore true that 

£ - J - = trace f f F(fcr)F(r,{Mr)<r(0drd{ (C) 
y=i ilj* Je Je 

To demonstrate this identity, it is necessary to substitute (*4) into (C) 
and contract twice using (12). Further identities in this sequence can 
be developed, including 2fiy~6, 2f ly - 8 , and so on, but these become 
unattractive from a practical point of view owing to the multiple in
tegrations required to evaluate the right side. 

Identities for |Pj| and |Hj j . Another family of identities involves 
only the modal momentum coefficients, |P,j and |H;|: 

£ PyPy 
J = l 

: ml 

£ H , P / = c 

.7 = 1 

(D) 

m 
(F) 

where m, c, and J are the zeroth, first, and second moments of inertia 
of S about O. In other words, m is the mass of 6, c/m is the position 
of the mass center of S with respect to O, and J is the moment-of-
inertia matrix for & about O. 

The proofs of (D)-(F) rest on Parseval's theorem and on the as
sumption that the mode shapes Uy satisfy the completeness property. 
According to a theorem quoted by Higgins [8], "a non-null symmetric 
L2 kernel is positive-definite only if all its eigenvalues are positive and 
in addition the totality of eigenfunctions is complete in L2(a, 6)." This 
theorem (extended to three variables) affirms in effect that if the 
structure C> has its eigenvalues |0y2) positive, and if F is positive-def
inite (as we have already assumed), then the eigenfunctions Uy(r) are 
complete. This paves the way for applying Parseval's theorem to prove 
(D)-(F). (For other relevant information on completeness of func
tions, see Mikhlin [9].) If g(r) is any 3 X 1 matrix function defined for 
r e S and satisfying Jg T gdr < <» then we define the Fourier coeffi
cients of g with respect to the basis {Uyj by 

ay * fg Uyr(r)g(r)<r(r)dr (21) 

Parseval's theorem, generalized to three independent variables, and 
to include the weighting function <r(r) > 0, states that because of the 
completeness and orthonormality of the (Uy j , it follows that 

£ 0-j2 = i gTg<r(r)dr 
y=i Je 

(22) 

More generally (e.g., [8, p. 17]), if a y and a2y are the Fourier coeffi
cients of gi(r) and g2(r) with respect to |Uyj, 

£ aya2y = I gTg2<r(r)dr 
y=i Je 

(23) 

These observations can be used to prove the identities (D)-(F). For, 
let 

Fig. 2 Geometry of parallel-axis theorem for momentum coefficients 

giW = 

1 

0 

0 

; g2W = 

0 

1 

0 

; o s W s 

0 

0 

1 

(24) 

Then 

ay = j Uj^giffdr = Piy 

that is, Giy equals the first element in the 3 X 1 matrix Py. We conclude 
from (22) that 

i>i;2= f 
y=i Je 

Xadt (25) 

Similarly, it may be shown that XP2J2 = 2P3y2 = m. Furthermore, 
using (23) it follows immediately that 2PyPjy = 'SPIJPZJ = 1IPZJP\J 
= 0. These results are collected in the single matrix equation (D). The 
identities (JB) and (F) are demonstrated in an analogous fashion. 

In spite of their usefulness (see Section 9), these identities have not 
generally appeared in the literature. The equivalent of the identity 
for modal angular-momentum coefficients (F) was realized by Likins 
([10, p. 69]); he arrived at it via a physical argument involving a lim
iting case. The same identity was mentioned in [5], where a different 
proof was used (equating coefficients of a certain null equation to 
zero). It is believed that the proof given in the foregoing is the most 
rigorous; it forces an explicit consideration of the assumptions under 
which the identity is valid. As for the other two identities, (D) and (E), 
they have not been reported before (as far as the author is aware). 

Paral lel-Axis Theorem for |P;j and (Hjj. A "parallel-axis the
orem" for the momentum coefficients is now presented. As in Fig. 2, 
consider two reference points, namely, A and B. As shown, locations 
with respect to A and B are denoted M and rg, and 

"A = 'B + 'AB (26) 

where XAB is the (constant) location of B with respect to A. Also, diA 
= dtB s dr. The first and second moments of inertia with respect to 
A and B are 

C/i * j rAadr; cB = j iBadt (27) 

•>A - - I TAtAodr; iB - - I tB'Bcdr (28) 
Je Je 

The parallel-axis theorems for c and J are well known and easily 
demonstrated from the aforementioned definitions 

°A = CB + miAB 

J A = JB — m*AB*AB — CB'AB ~ 'ABCB 

(29) 

(30) 

Of more novel interest are the momentum coefficients. The (Py| are 
independent of the reference point, while, for the |Hy|, 

H ŷ = f fxUyo-dr; »Bj ± f rBUy<rdr (31) 

which implies the result sought 
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f(r,t) = -<r(r)w(r, t) + fe(r, J) (34) 

V - R + I £"n 
n= 

Fig. 3 Vehicle: one rigid body and N elastic bodies 

H/y = HBy + fAflP; (G) 

As a check, if one starts from the identities (D)-(F) with A as a ref
erence point, and substitutes (G), then the parallel-axis theorems (29), 
(30) can be employed to show that the identities (D)-(F) also hold 
with B as a reference point. Identity (G) is particularly useful when 
adding a flexible body of known characteristics to a vehicle. 

Identities for |P,j, {H;|, and {fi,| Together. To complete this 
section, a trio of identities is presented that involves both the natural 
frequencies jfij) and the momentum coefficients {Py, Hy|: 

£^TT = f f F('. {MrMfldid* (H) 
y=i fiy2 Je Je 

£ ^ T F = f f fF(r,£Mr)<r(£)drd$ 
y=i fly2 «/« •/« 

X X ?F(r' * )?<r( , ) '7(©drd* 

(/) 

(J) 

The proofs consist of inserting (A) for F(r, £) on the right side, and 
using the definitions (18) for |P;, H,}. 

5 Rig id B o d y W i t h N F l e x i b l e A p p e n d a g e s 
Consider now a vehicle consisting of a rigid body fi, to which are 

cantilevered JV elastic bodies \S\, .. ., 6N\- This implies that at 0„, 
the attachment point of Sn to fi, there is neither translation nor 
rotation of Sn with respect to fi. Some flexible vehicles, especially 
spacecraft, are particular cases of the abstract model shown in Fig. 
3. Other types of vehicle (aircraft, for example) may be more naturally 
modeled as a single large elastic body (Section 6). 

No constraints are placed on the motion of fi, except that its 
translation and rotation be "small" to correspond to the small elastic 
deflections. Therefore, haying picked a point of reference, 0 , in fi, 
the total displacement of a mass element in the vehicle is the sum of 
three terms: a translation wo, due to the translation of O; a rotation 
0, due to the rotation of fi about O; and an elastic displacement u. In 
symbols, 

w(r, t) = w„(t) - W + 
0, 

u(r, 4), 

r e fi 

r e 2<?„ 
(32) 

The motion equations for the vehicle may be arrived at by observing 
that the momentum and angular momentum (the latter about 0) are 
given by 

Pit)- C vd ho ( i ) : X fvdm (33) 

where v(r, t) = w(r, t), dm = <r(r)dr, and "V = fi + 2<S„ is the whole 
vehicle. The motion equations corresponding to wo and 9 are then p 
= F and ho = G under the assumption of small wo, 8 and u, where F and 
G are the total external force and torque (about O) on "V. The motion 
equations corresponding to u(r, t), r e Sn, (n = 1 , . . . , N), are all of the 
form (8), except for additional terms due to the extra inertial "force" 
field in (6): 

and w(r, t) is inferred from (32). Collecting the motion equations to
gether, and recognizing that all second-order terms in wo, 0 and u are 
to be dropped, we have 

where 

mw0 - C0 + £ £ PjnQjn = F 

N •*> 

C«o + J# + E E HjnQjn = G 
n=l ; '= l 

'PjnT*0 + »inT'6 + (Qjn + $ V Q j J = ?jn 

(j=l,...,<»;n = l,.:.,N)/ 

m = mr + E mn * mr + me 

N 
C = C, + Y. °rc ~ °r + <=e 

(35) 

(36) 

J = Jr + 1 4 
n-l 

Jr+Je 

The subscript "r" denotes "rigid body"; c„ and J„ are defined in (37). 
Note that (35) can be simplified slightly by choosing the reference 
point 0 to be the vehicle mass center, whence c = 0. P;„ is the modal 
momentum coefficient associated with the ith mode in the rath elastic 
appendage; similarly, the JH;„) are modal angular-momentum coef
ficients. However, in the case of the |H,n), note that the moment arm 
is with respect to O, not 0„, and the identities for H;„ reflect this fact. 
Thus, referring to (D)-(F), 

j=i J-=I 

E»jn»jnT= Jn (D, E, F)' 
i=i 

where the first and second moments of inertia are evaluated with re
spect to O: 

c„ = I rdm; J„ = - | ridm = \ (r21 - nT)dm (37) 
JSn Jen JtSn 

This same point is noteworthy in connection with the identities (/) 
and (J). 

Compact Form for Motion Equations. The motion equations 
(35) are now written in a more compact form with the aid of the def
inition 

P 1 ' 

pN 
; H = 

H 1 ' 

HN 
; "e = 

V 
fN 

PnT^[PlnP2n.-.}; H - ^ M h . . . ] 

QnT=lQmQin-. •]; fi" = diag | f i l m Ban, . . . I 

(all for n = 1,. . ., N). The next stage results from defining 

0 ( 0 * 

Q = diag (Q1 QN\ 

whereupon they become 

m*o - c9 + P T 6 = F 

cw0 + J6+ H T Q = G 

Pwo + H8 + Q + Q2Q = ue 

From the identities (D, E, F)' it is learned that 

PTP = m e l ; HTP = ce; HTH = Je 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

(A E, F)" 
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where me, ce, and Je are the zeroth, first, and second moments of in
ertia of _<?„ about O, and were defined in (36). 

We can without loss of generality assume that the reference point 
O is selected to coincide with the mass center of the (undeformed) 
vehicle; we also denote the moment-of-inertia matrix with respect to 
the mass center by I: 

c —0; J —I (44) 
To distinguish between the rigid and elastic terms in (43), we further 
define 

Mr 
m l O 

O I. 

whereupon (43) becomes 

where 

Me = [PH]| q r = 

Mq + Kq = u(£) 

M = 
M r 

[M„ 

M, 7 ! 

1 ; K -
o ol 
0 W\ 

; q = M 
LQ 

; u = 
" r 

["el 

(45) 

(46) 

(47) 

The total kinetic and potential energies of the system are, respec
tively, 

T = iqTMq; V = -qTKq 
2 2 

Note also that M, the system inertia matrix, is symmetric and posi
tive-definite (MT = M > 0), and that K, the system stiffness matrix, 
is symmetric and positive-semidefinite (KT = K > 0). 

6 Natural (Unconstrained) Modes of Vibration for "V 
In the absence of external influences (fe = 0), the motion of *V 

consists of a superposition of natural modes of vibration. To em
phasize that there are no constraints on this motion, we will refer to 
these modes as unconstrained modes. It is possible to derive these 
modes in several ways and by comparing the results of two or more 
derivations several identities can be established. In this section, the 
unconstrained modes are developed without reference to the con
strained modes of earlier sections, that is, without reference to (43). 
We shall subsequently return to (43) in order to deduce certain 
identities. 

Consider a (static) stiffness operator for <V in the same spirit as the 
stiffness operator for Sn, given by (1): 

<?[w(r)] = f(r) r e V (50) 

A solution to (50) does not generally exist because <£ is only positive-
semidefinite due to the lack of constraints. Indeed, the following ei-
genfunctions correspond to zero eigenvalues for S: 

w(r) = 

(51) 

These correspond to "rigid" translations and rotations of °V. Solutions 
for (50) exist only for right-hand sides f (r) that are orthogonal to the 
eigenfunctions (51). These restrictions may be summarized thus 

1 

0 

0 

, 
0 

1 

0 

, 
0 

0 

1 

, 
0 

-ra 

ri 

, 
rz 

0 

-n 
, 

- r z 

n 
0 

J f (r)dr = 0; f ff(r)dr = 0 
•v J'v 

(52) 

The.evident physical interpretation is that the net force and torque 
on "V must be zero. Furthermore, since w(r) = wo — id + u(r) (the last 
term present only on _<?„), (50) becomes 

#z[u(r)] = f(r) r e £ £ „ (53) 

since we already know that u(r) = 0 for r e 3i.t The subscript _ on S is 
. a reminder of the restriction r e 2<5„ in (53). In fact, under the con
ditions (52), the operator inverse to <¥„., 5_, can be expressed in terms-
of the flexibility kernels for S\,. . ., SN'-

u(r) = 5r_[l(r)] = _ f F„(r, £)«$)_{ (54) 
n=l •JCn 

which should be compared with (2). 
Generalizing from statics to dynamics via d'Alembert's principle, 

and noting that 

f(r, t) = -<r(r)w(r, t) + le(r,t) 

(52) and (53) become 

J wdm — F; ( fwdm = G 

#.[u(r, t)} = -o-(r)w(r, t) + fe(r, t) 

(55) 

(56) 

(57) 

where, as before, F and G are the total external force and torque on 
•V. 

The unconstrained modes for °V, namely, 

r e n 

u„(r), r e _(S„ 

are found by setting te = 0. From (56) we learn that 

w„(r) = w0a - Wa + (58) 

w„2(p„ + mw0„) = 0; o)„2(h„ + I0„) = 0 

(48,49) w h e r e 

P« - E I u„dm; h„ = _ | ru„( 

while, from (57), 

dm 

<S's[u„(r)] = <r(r)_2„w„(r) 

(59) 

(60) 

(61) 

After dividing out the anticipated a>2 = 0 cases (corresponding to rigid 
modes), (59) states that the total momentum and angular momentum 
associated with the elastic modes are zero. Note that p„ and h„ are 
associated with the momentum and angular momentum of the a th 
mode due to elastic deformations in 2c?„. In numbering the a>„, _ i will 
correspond to the first elastic mode of "V (the rigid modes will not be 
numbered). The following orthonormality conditions can be dem
onstrated from (59)-(61): 

J w„TW(3<r(r)dr = &ap 
v 

N p 
_ I u„TW0<r(r)dr = 8ap 

n=l JSn 

N r* 
_ I "a

T^s[»p]dt = (Ji„2b„fi 
n-1 Jen 

N r. 
_ I u„Tu^<r(r)dr - 6„T\BB = &«e 

n=l Jen / 
It is instructive to compare (62) with the orthonormality conditions 
for constrained modes, (12) and (13). 

We now give two identities that follow immediately. Since, from 
(54), 

(62) 

Ua(r) = a ) „ 2 _ f F„(r,$)w„(f )«•($)_$ 
n - i Jen 

it can be demonstrated that 

M a ) = _ ^ ^ r e <§•„; \e Sn 

(63) 

(K) 

which should be compared to (A). In like manner to (S), we also 
have 

trace _ I F„(r, r)<r(r)dr = _ 
n=\ Je„ a=.i 

l + mw„Two„ + 0„Tl0« 

To solve for the general motion (fe £0), let 

w(r, t) = W( i ) - r 9 ( t ) + _ w„(r)7)„(t) 
( V = l 

tt) 

(64) 
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where the translation W(£) and the rotation 9(4) are included to ac
commodate the rigid modes. Upon substitution of (63) into the motion 
equations (55) and (57) (remembering that 0 is the mass center of "V), 
and taking advantage of the orthonormality conditions (62), we 
find 

mW = F; 10 = G 

p„TW + hJQ + r,„ + o>JVa = /„(£) (a =1,2,.. .) 

where the (unconstrained) modal input is 

/, a(t)= E f u„rfe(r,t)dr 

(65) 

(66) 

With generous use of the orthonormality conditions (62), the kinetic 
and potential energies of "V reduce to the following relatively simple 
forms 

tTvdn 
2 2 2 „ t i ' " ' 2 J<v 

V = ; E f ur#j[„]d, = i £ ; <ea\ 
2„=i Je„ 2„=i 

(67) 

(68) 

It is worthwhile comparing these with (19), (20), and (49). 
The motion equations (65) must be equivalent to the set (44), an 

equivalence which requires the observation that 

wo = w + £ Wo«i}«; e = e + E e«ya m) 
a-1 « = 1 

It is through this equivalence that several identities can now be de
rived. 

7 Ident i t i e s B e t w e e n Constra ined and U n c o n s t r a i n e d 
Moda l P a r a m e t e r s 

To facilitate a comparison of the two equivalent systems (43) and 
(65), Laplace transforms are beneficial. We are especially interested 
in the response of wo and 8 to le. To deal first with (43), Laplace 
transforms are taken (zero initial conditions will be assumed) forming 
a system of equations for w"o, 8, Q. Laplace-transformed variables are 
designated by overbars and the Laplace variable is s. After substitu
tion for Q, the result can be expressed in the form 

M(s)s2qr = uT(s) 

where (the symbols of (45) are used) 

M(s) * Mr - s2Me
T(s2l + Q2)-lMe 

uT(s) = ur(s) - s2Me
T(s2l + W)-l*e{s) 

More explicitly, the system inertance, M(s), is given by 

M(s) = Mr 

N' «. 

• E E -
S 2 + Q j n

2 

and the total input (the right-hand side of (70)) is 

uT(s) = ur(s) • 
N 

E E 

Pyn 

;T,„ 

(70) 

(71) 

(72) 

(73) 

(74) 
n ~ l / i i S 2 + Ujn

2 

Note that even though we have arranged to have c = 0, the transla-
tional and rotational motions are coupled via elastic vibrations, as 
represented by the products P/„ H/„ T, which are not generally zero. 
Under certain symmetry conditions, however, their combined effect 
vanishes and the translational and rotational motions are.uncou
pled 

m(s)s2wo = UTIO(S); }(s)s28 = uTn(s) (75) 

where m(s) and l(s), respectively, called the translational and rota
tional inertance, are given by . 

N - o 2 p . p . T 

m(s) = ml — E E — — 
n = l ; ' = l S 2 + flj„2 

(76) 

Ks) = i - E E 2 

and the inputs are 

"Tto(s) = F - E E 
'lj=lS2 + Q.jn

2 

N - s 2 H ; n 

uT»(s) = G - E E 

T * 

(77) 

(78) 

(79) 

Identi t ies for a)„ in Terms of |Qj„, Py„, H/„). The first identity 
comes from the realization that the unconstrained frequencies a>„ 
satisfy 

detM(i(o„) = 0 (M) 

In particular, with symmetry, this characteristic equation devolves 
into two parts 

det m(j'o)s) =• det ml + up2 E E 
p. p. T 

n=\j=\ Sljn2 - Ufi2. 

= 0 ( / 3=1 ,2 , . . . ) (M)u. 

detl(ioj7) = det I + a>^ E E 
n = l >=1 *ljn~ 

: 0 (T = 1, 2, . . .) (M)„ 

Note that the subscripts /3 and 7 are used to distinguish the "trans
lational" modes from the "rotational" modes; then |o>„| = \wp\ (J 
| O J 7 | . 

With the aid of the simple device. o>„2 = (o)„2.— Qjn
2) + fljn2, and 

observing the identities (D)', (E)', and (F)', an alternate form for 
identity (M) can be deduced. Illustrated for the symmetric case, (M)w 

and (M)a become 

det m(ioiff) = det m r l + E E ' ' ' 0 

03 = 1,2,...) (7V)B 

and similarly for det l(i'o)7). 
The Laplace transform of the equivalent system, (65) and (69), is 

taken next. After substitution for rja, the result is 

s2qr = M x(s)ur + ue, 

where, using (59) also, we find 

M-J(s) = M^1 + E 

Wof wo, 

s 2 + (>>„ 

Uee(s) • ' E -

«On 

/« 

(80) 

(81) 

(82) 

The notation M_1(s) is used for the coefficient matrix in (80) because 
a comparison with (70), (72) indicates that the coefficient matrix must 
indeed be M_1. 

Identit ies Between |<o„, p„, ha | and \Qj„, Pjn, Hy„). By a direct 
comparison of (73) and (81), several identities are deduced. The two 
expressions evidently agree for s = 0. By setting s = ifiy„, for any ; (7 
= 1, 2, . . .) and any n (n = 1, . . ., N), we note from (73) that det 
M~1(iQjn) = 0. With symmetry, this is equivalent to 

%„2 E 
P0P0 

? = 1 . V - ttjn2 

° P(vh<,T 

_, ,,, 2 _ o . 2 

%n
2 E 

- = m l 

h T h T
T 

^^ 2 O 2 

(O) 

(P) 

(Q) 

where the choice of 7 and re is restricted to appendage modes that 
contribute to WQ (in (O)) or 8 (in (Q)). 
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Identities for jpa) and jha). The next set of identities is obtained 
by examining the limit as s —• «>. From (73), 

Lim M(s) : mr 1 — c r 
(83) 

To arrive at this conclusion, identities of the type (D)'-(F)' have been 
inserted for each Sn, and the definitions (36) used. We shall need the 
inverse of this matrix. After some algebra, 

Lim M(s)~ 
mr

 l\ - icr\r
 li, tcr*r 

I r - 1 
(84) 

where lr is the moment-of-inertia matrix for Tt about the mass center 
of if, given by 

J r "t" TYlr Xcr tCi (85) 

and x„ is the position of the mass center of !R with respect to 0 (the 
latter having been chosen as the mass center of 'V). 

Applying the same reasoning to (81), and applying (59), we conclude 
that 

£. papa
T = {mme/mr)l - m2rcr\r 'fa 

o = l 

£ P«h«T = mFcr.lr
_1l 

« = i 

£ h„h„T= l l , ."1!- I 

(R) 

(S) 

(T) 

When symmetry prevails (Og = 0, woT = 0, and rcr = 0), more simple 
forms can be written. It is interesting to compare these identities for 
the unconstrained modal momentum coefficients with the earlier 
identities, (D)-(F), for their constrained counterparts. Another 
variation on this theme can be created by employing the artifice Ujn

 2 

= (fi/n2 ~ a„z) + Ua2 in (O)-(Q), and reducing the result with 
(Rh(T). 

Value of the Sum 2a>a
-2, The next identity to be presented is the 

following: 

1 N ~ 1 1 N 

£ E — - - £ E n= 1 j= 1 &jn 2 m n= 1 ;'= 1 

rjn rjn 

Q 2 • £ £ 
n=1j=1 

H i / l - ' H j , 

fii, 
(f/) 

To prove this result, it is noted from (46), (47) that the characteristic 
equation for a)2 can be written 

0)2Mr (o2Me
T 

o>2Me w2l - Q2 det 0 (86) 

We may factor out co from each of the first six rows and also from each 
of the first six columns of the matrix in (86) to eliminate the rigid 
modes. To avoid the apparent problem of elements becoming un
bounded, we may pre- and postmultiply this matrix by the nonsing-
ular matrix diag (1, S2_1) whence the characteristic equation for 
to2 ^ 0 is 

0(a)2) = det = 0 
la>Q~lMe o)2fi-2 - 1. 

Noting that 0 is a polynomial in u>2, we conclude that 

- 1 
E - v Moo2) 

diji/dii »2=0 

(87) 

(88) 

After considerable algebra, and using mathematical induction, it can 
be shown that 

1 N » l 
E = E E 

N » 

Z E 
7 1 = 1 . 1 = 1 

Pin 

H/'n 

T Pjn 

Q 2 

(89) 
Upon substitution of (45a) into (89), the identity (£/) is proven. 

Journal of Applied Mechanics 

Yet another identity can be obtained by differentiating (81) with 
respect to s2, and evaluating the result at s = 0. Note that 

— M(s)-1 = - M ( s ) - 1 - M ( s ) M(s)-1 

dsi Ids2 } 
(90) 

Evaluating (90) at s = 0 with the aid of (73), we arrive at the desired 
results (see (59) also): 

"> n n ^ N m p . p . T y , VaVa _ " f]n fjn 

a=\ UJ„ n=l j=l \Ljn 

o = l 0 ) „ 2 n - l j = l fi,'„2 

" W V ^ N - HjnHyBr 
' ^ - , 2 O 2 

« = 1 COQ; ^ = 1 j ' = l lf/'n 

(V) 

(WO 

(X) 

As usual, simplifications are possible when V is symmetric. 
As a final result, we note that M(s) may also be expressed as 

M(s) = Mr 

n i+-

N co / g2 

E n l 1 + v 
(y) 

= 1 ; = 1 

The proof consists of noting that (i) both sides of (Y) have the same 
poles and zeros, and (ii) they agree for s = 0. 

8 N u m e r i c a l E x a m p l e 
As a simple example of some of the preceding results, consider the 

long slender cantilevered rod shown in Fig. 4, and for which the flex
ibility kernel is given by 

Fix, f) • 
*2(3£ -x)/6B, 0<x<£<l 

£2(3x - £)/6B, 0 < £ < x < I 

The identities of Section 4 can be illustrated; since 

P f F(x,x )dx •• III 
12B 

p2 F(a,-€)dxd{ = ^ — 
-'o Jo 10B 

rl r< l i p 2 / 7 

p2 j I xkF(x,0dxd%-
Jo Jo 210B 

(91) 

(92) 

(93) 

(94) 

simple closed-form sums are available for the series in Identities (B), 

f ( £ ) 

Fig. 4 Long slender cantilevered rod 

Fig. 5 Vehicle with two appendages 
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(H), and (J). For example, it is known that the first two natural 
frequencies of a cantilevered rod approximately satisfy Qi~2 + fi2~2 

s (12.08B)-V4 which concurs with (B). Identities (H) and (J) can 
be compared in a similar fashion. 

This example can be extended to illustrate many of the uncon
strained modal identities as well. In Fig. 5 is shown a "vehicle" with 
two flexible "appendages," each a long slender rod of length I. Ac
cording to Identity (U) and the sums (92)-(93), we should have 

1 4nl4 

£ -i= db 3 ° - 0 3 8 1 pl4,B (95) 

„=i o>„ 105B 
(The mass, m = 2pl, and the moment of inertia about 0, 2pl3/3, have 
also been substituted.) The standard results for the free-free vibra
tions of a rod (e.g., [6, p. 165]) give cci~2 + a>2-2 + <>>a~2 + C04-2 s 0.0376 
pl4/B. The first and third modes are skew-symmetric and the second 
and fourth are symmetric. 

Although this example illustrates the meaning of the identities, and 
verifies them for a simple case, the results in this paper attain their 
full usefulness when applied to more complex structures. 
9 Usefulness of the Results 

Many uses for the identities derived above can be cited, and it is 
likely that more will be found in the future. Some of these are theo
retical, while others are practical or numerical. On the theoretical side, 
several of the earlier identities were used as intermediate results in 
the proof of later identities, and it is certain that many further results 
in the same vein can be found. Also of interest from a theoretical 
standpoint, virtually all the identities involve the sum of an infinite 
series. By finding the value of the sum, it has been demonstrated a 
fortiori that the series converges. As a final instance of theoretical 
utility, consider the system of coupled equations (43) for the motion 
of "V and, for simplicity, assume c = 0 and that mass-center motions 
and attitude motions are uncoupled 

l0 + HTQ = G(i) • x 

a •• o ( 9 6 

H0 + Q + Q2Q = uM) 
These are well-known equations in the attitude dynamics of flexible 
vehicles (e.g., equation (288) in [10]). For any of several reasons (nu
merical integration, for example), it may be desirable to solve for 8 
and Q. Using Identity (F)", and noting that I = Jr + Jc, it is straight
forward to show that 

whence 

8 = Jr-
1[Qo-HT(u.-02Q)] 1 

Q = -HJ r - !G 0 + (1 + HJr-iH'OOi,, - fl20)j 

The motion equations are now ready to integrate. 
Many of the identities are also eminently practical. Most impor

tantly, they provide a sound basis for modal truncation. If, for ex
ample, the retained modes satisfy 2 2 H j „ 2 = 0.99Je or Sh„ 2 = 
0.99IIe/Ir, there is a clear indication that the modes omitted do not 
contribute materially to the motion (other things being equal). The 
identities for the unconstrained modal parameters in terms of con
strained modal parameters also permit an assessment of the influence 
of each constituent elastic body on the vehicle as a whole. If the pa
rameters of Sn change, it is not necessary to reanalyze the whole ve

hicle. The new vehicle frequencies and momentum coefficients jco„, 
p,», h„| can in principle be calculated from (M) and (O), (P), (Q), re
spectively. 

10 C o n c l u d i n g R e m a r k s 
Throughout this paper, only the "exact" modes have been discussed 

and no truncation of modes has been made. Theoretical results are 
sought, and there is neither need nor motivation for making either 
type of approximation. Indeed, it is one of the chief aims of the paper 
to provide quantitative criteria for the error introduced when such 
approximations are necessary (numerical work). Vehicle modes can 
also be synthesized [12, 13] from (discrete) "component modes." 

Structural dissipation of energy has not been considered although 
an analogous set of identities can be derived which relate the uncon
strained modal damping factors for the vehicle to the constrained 
modal damping factors for individual appendages, provided these 
factors are small (as they usually are) and can therefore be treated as 
first-order quantities. There are also many other generalizations of 
these identities; in fact, this paper is really just a beginning. Modal 
parameter identities can also be found [11] if <V is spinning, or, if not 
spinning, contains spinning wheels or rotors. Moreover, if the elastic 
bodies (>n are not cantilevered to fR but are instead hinged (intro
ducing new rigid modes for *V), similar identities can be derived. Even 
for general topological trees of rigid and elastic bodies, identities of 
the form derived herein can be shown to exist. 
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A Theory of Index for Point Mapping 
Dynamical Systems 
Dynamical systems governed by discrete time-difference equations are referred to as 
point mapping dynamical systems in this paper. Based upon the Poincare theory of index 
for vector fields, a theory of index is established for point mapping dynamical systems. 
Besides its intrinsic theoretic value, the theory can be used to help search and locate peri
odic solutions of strongly nonlinear systems. 

1 Introduction 
In recent years the method of point-to-point mapping has been 

receiving increasing attention for treating nonlinear dynamical sys
tems. The general method dated back to Poincare [1] and Birkhoff 
[2], and in the past 20 years or so it has received a great deal of 
mathematical development, mainly by people working in the field of 
differentiable dynamics; see, for instance, the work by Arnol'd [3], 
Smale [4], Markus [5], Takens [6], and Marsden and McCracken 

[7]. 
Consider a nonlinear dynamical system 

x( t )= f (x ( t ) , t ) (1) 

If the system is periodic so that f is explicitly periodic in t, then the 
point mapping approach is particularly attractive. The existence of 
a period allows one to view the dynamical system as a mapping which 
relates the state of the system at the end of one period to the state at 
the end of the next period. Viewed in this manner, the governing 
equation for the system takes on the form 

x(n + 1) = G(x(n)) (2) 

This approach has been used in [8-13] to study certain strongly 
nonlinear mechanical systems under periodic parametric excitations. 
By this approach various interesting bifurcation phenomena and 
special features of global responses can be studied in a very effective 
manner. It is also strongly believed that since the point-to-point 
mapping method is extremely well suited for computer adaptation, 
there will be a much greater development of the method in the coming 
years, particularly for the purpose of studying the global behavior of 
strongly nonlinear systems. In this paper we offer a development 
which might be said to provide point mapping dynamical systems a 
theory of index, analogous to Poincare's theory for two-dimensional 
autonomous differential equations which is well known to be one of 
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the most elegant theories in the field of nonlinear oscillations. In this 
connection we mention here an early work by Levinson [14] which 
contains results directly related to the present development. 

Beside giving the theory, some examples of application will be 
discussed in Section 8. Through these examples, it will be seen that 
in addition to its intrinsic theoretic value this theory of index can be 
used to advantage to help search periodic solutions of strongly non
linear systems and to verify the existence and the number of these 
solutions within a given region of the phase plane. 

Although we have introduced (2) here as the point-to-point map
ping equation resulting from conceptually integrating (1) over one 
period, it is, of course, not necessary to take such a narrow view. 
Equation (2) can in fact arise as the basic governing equation for 
certain dynamical systems in many fields of science and engineering. 
For this reason in the following development of the theory of index 
we shall consider (2) in its own right, namely; a class of dynamical 
systems governed by a system of diffference equations. 

A few words about the terminology might be in order here. In [8], 
for convenience, dynamical systems governed by (1) or (2) are, re
spectively, referred to as differential dynamical systems or difference 
dynamical systems. These names are quite adequate and in a sense 
very precise. In this paper we elect, however, to use the more de
scriptive name point mapping dynamical systems for systems gov
erned by (2). We also refer to (2) as a point mapping, or sometimes 
simply a map. 

2 Theory of Index for Two-Dimensional Vector 
Fields 

The theory of Poincare's is basically a theory of index for two-
dimensional vector fields. Let F = (JFI, F2) be a continuous real-valued 
vector function defined on a bounded open set Bo in the (xi, x-z) phase 
plane. A point at which F = 0 is called a singular point of F. We assume 
that all the singular points of F are isolated. Let J be a Jordan curve 
in S 0 passing through no singular points of F. At every point on J, F 
is defined. Let <p be the angle the vector F makes with some fixed di
rection. Let $ be the total change of <p as (x 1, x-i) moves along J once 
in the positive direction. The classical theory of Poincare's is em
bodied in the following definitions and theorems: 

Definition 1. The index of J with respect to F, to be denoted by 
I {J, F), is defined to be $/2ir. 
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Theorem 1. If J is a Jordan curve which contains no singular 
points of F on it or in its interior, then I(J, F) = 0. 

Corollary 1.1. If J i is a Jordan curve which is contained in the 
interior of another Jordan curve Ji and if no singular points of F lie 
between J\ and J2, then l(J\, F) = I(J% F). 

Definition 2. The index of an isolated singular point P with respect 
to a vector field F is defined as the index of any Jordan curve which 
contains only P and no other singular points of F in its interior, and 
is to be denoted by I(P, F). 

Theorem 2. If J is a Jordon curve containing a finite number Pi, 
p2> • • • , pN of singular points of F in its interior, then 

I (J, F)= £ / (P; ,F) . 

Next, we present the dependence of the index of a singular point 
of F on the local property of F near the singular point. Without loss 
of generality, let the singular point be located at the origin 0 = (0,0) 
and let F admit the form 

F(x) = Lx + P(x) (3) 

where L is a 2 X 2 constant matrix and P represents the nonlinear part 
of F and is assumed to satisfy 

|P(x) 

4 A 

lim- ;0 as x - * 0 . (4) 

Here we take the norm of a vector to be its Euclidean norm. We also 
assume 

det L ^ 0 (5) 

The origin is now an isolated nondegenerate singular point of F. Its 
index with respect to F is entirely determined by the linear part Lx of 
F, as embodied in the following two theorems: 

Theorem 3. 1(0, F) = 1(0, L). 
Theorem 4. Given a nondegenerate singular point of F at the or

igin, its index with respect to F of (3) is +1 or —1, according as (det L) 
> 0 or < 0. 

These results are classic. We record them here in order to set up the 
notation and also for the purpose of easy reference as we proceed to 
present a theory of index for point mapping dynamical systems in the 
next few sections. 

3 Periodic Solutions of Point Mappings 
Consider now point mappings G of (2). Let us denote by Gk the 

mapping G applied k times, with G° understood to be an identity 
mapping. A periodic solution of period K of a mapping G is a set of 
K distinct points x*(j), j - 1,2,. .. ,K, such that 

x*(m + 1) = Gm(x*(l)), m = 1,2, • 

•x*(l) = G*(x*(l)). 

,K-1, (6) 

Since we will refer to periodic solutions of this kind time and again, 
it is convenient to adopt an abbreviated name. We shall call a periodic 
solution of period K as a P-K solution and any of its elements x*(j), 
j = 1, 2,. . . , K, a periodic point of period K, or, in abbreviation, a P-K 
point. 

The P-1 points can of course be interpreted as the equilibrium 
states of the point mapping dynamical systems. As such, they occupy 
a unique position and perhaps deserve a special name other than just 
"P-1 points." However, if the point mapping is in fact obtained from 
a system of differential equations by integrating over one period, then 
a P-1 point could very well correspond to a periodic solution of period 
1 for the differential dynamical system and the P-K points correspond 
to subharmonic solutions of period K. Because of this possible in
terpretation we elect here not to use a special name for the P-1 
points. 

4 The Index of a P-1 Point of a Point Mapping 
Having defined the periodic points, we consider in this section the 

index of a P-1 point. 

SADDLE OF THE 

SECOND KIND 

\ STABLE NODE OF 

THE FIBST KIND \ 

UNSTABLE 

NODE OF THE 

SECOND KIHD 

>̂' 

SADDLE OF THE 

FIRST KIND 

STABLE 

SPIRAL 

STABLE NODE 

OF THE SECOND 

KIND 

SADDLE OF THE 

SECOND KIND 

4 

UNSTABLE 

NODE OF THE 

FIRST KIND 

UNSTABLE 

SPIRAL 

UNSTABLE NODE 

OF THE SECOND 

Fig. 1 Dependence of the character of a periodic point on A and B. 

4.1 The Index of a P-1 Point With Respect To G - I . First, we 
identify the vector field F of Section 2 with (G — l)(x) where I is the 
identity mapping. 

F(x) = (G - l)(x) = G(x) - x (7) 

It is obvious that all the P-1 points of G are the singular points of F as 
defined by (7) and all the singular points of F are the P-1 points of G. 
Consider now one of the P-1 points, say x*. Near x*, F may be put in 
the form 

where 

F(x) = (H(x*) - l){ + P(£) 

£ = *-

(8) 

(9) 

H(x*) is the Jacobian matrix of G with respect to x evaluated at x = x* 
and ig also to be written as 

H(x*) = DG(x*), (10) 

and P(ij) symbolically represents the nonlinear part of the mapping 
G and it is also the nonlinear part of the vector field F nearx*. 

If we let 

A(x*) = trace H(x*), B(x*) = det H(x*), (11) 

then one easily finds that 

det(H(x*)-l) = l-A(x*)+B(x*) = l-A+B. (12)1 

Let us assume that det (H(x*) - I) ^ 0. Such a singular point will be 
called a nondegenerate singular point of F of (7), or a P-1 point of G 
nondegenerate with respect to (G — I). (H — I) being the linear part of 
F near x*, it can be identified with L of Theorem 4. This leads to the 
following result which can also be found in [14]. 

1 When it is desirable to indicate H, A, and B to be those associated with a 
particular point P, we shall use the notation H(P), A(P), and B(P). But when no 
ambiguity is likely to occur we will drop the label P and simply use H, A, and 
B. 
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Theorem 5. If x* is a P-1 point of G nondegenerate with respect 
to (G — I), then its index with respect to (G — I), to be denoted by I(x*, 
G — I), is equal to +1 or —1, according as det (H — I) > 0 or < 0. 

Next, we will relate the index of a P-1 point to its geometric char
acter. At this stage it is necessary to recall the dependence of the 
geometric character of a P-1 point on the linear map H. A P-1 point 
may be a center, a stable or unstable spiral point, a stable or unstable 
node of the first or the second kind, or a saddle point of the first or the 
second kind, depending upon the relative magnitudes of trace H and 
det H. For a detailed discussion the reader is referred to [11], but for 
the sake of easy reference this dependence is shown graphically here 
by Fig. 1. One notes here that according to Theorem 5, all the points 
above the line det (H — I) = 0 will have an index —1 while all the points 
below the line have an index +1. 

Here one notes the first drastic departure of the theory of index for 
point mapping dynamical systems from the theory of Poincare for 
two-dimensional autonomous differential equations. For that classical 
theory [15,16] the index is —1 if the singular point is a saddle point 
and is +1 if it is of any other kind. For the point mapping systems we 
find that included in the case of —1 index are certain unstable nodes 
of the second kind and included in the case of +1 index are certain 
saddle points of the second kind. More differences between the two 
theories of index will be seen later. 

Combining Theorems 2 and 5, we have the following global re
sult: 

Theorem 6. Given a point mapping G, if a Jordan curve J contains 
a finite number Pi, P2, — , PN of P-1 points of G in its interior, and if 
p i is the number of points having positive det (H(P;) - I) and q\ is the 
number of points having negative det (H(P;) — I), with p i + q\ = N, 
then the index of J with respect to (G — l ) , tobedenotedby/ ( J , G — 
l ) , i s p i - < j i . 

4.2 The Index of a P-1 Point With Respect To G2 - I. Again 
consider a P-1 point x* but let us now consider a vector field F defined 
as 

F(x) = G2(x) - x = (G2 - l)(x) (13) 

This vector is obtained as the difference between the image of a point 
after point-mapped twice and the point itself. The P-1 point x* is 
again a singular point of F. Near x* one has 

F(x) = (H2(x*) - l)£ + P(£) (14) 

where H, £, and P have the same meanings as before. Let us further 
assume that the P-1 point x* of G is nondegenerate with respect to (G2 

— I) so that det (H2(x*) — I) ^ 0. Using F as given by (13) and applying 
Theorem 4, we have the following result: 

Theorem 7. If x* is a P-1 point of G nondegenerate with respect 
to (G2 — I), then its index with respect to (G2 -1) , to be denoted by I(x*, 
G2 - I), is +1 or - 1 , according as det (H2(x*) - I) >0 or <0. 

It is easily shown that 

det (H2 - I) = [det (H - I)] [det (H + I)] 
= (1-A + B)(l + A + B) (15) 

With this result the last expression in Theorem 7 may be replaced 
by 

[det(H-l)] [det(H + D] sj 0 (16) 

Section 4.1 concerns certain nodes and saddle points of the second 
kind. By going to (G2 - I) and, therefore, applying the mapping twice, 
one removes the complication of the behavior associated with singular 
points of the second kind and consequently leads to a simpler geo
metrical result. On this point it might be instructive for the reader 
to see the portraits of the possible discrete trajectories around the 
various kinds of singular points; see, for instance, Fig. 1.1 of [13].2 

While the geometrical meaning of the index I(x*, G2 — I) is much 
simpler, for a reason to be discussed shortly, we cannot immediately 
establish a global result analogous to Theorem 6. That will have to 
await until later. 

4.3 The Index of a P-1 Point With Respect to G * - I. Next, 
let us take the vector field to be 

F(x) = G*(x ) -x = ( G * - l)(x) (18) 

A P-1 point x* of G is again a singular point of this F. Near x*, F has 
the form 

F(x) = (H*(x*)-D? + P(£) (19) 

Assume now that x* is nondegenerate with respect to (G* — I) in the 
sense that det (Hk(x*) - I) ^ 0. Then by Theorem 4 the index 7(x*, 
G* — I) is +1 or —1 depending upon whether det (H*(x*) — I) > 0 or 
<0. Here it is necessary to examine det (H*(x*) — I) in a greater detail. 
When k is odd it can be expressed in the form 

where 

det(H* - I) = [det (H - I)] • Dt 

Di = det(H*-! + H*-2 + • • • + H + I) 

(20) 

(21) 

In (20) and (21) and in the remainder of this section we drop the 
argument x* of H. D\ may be further expressed as 

Di = (Xi2? + A!2"-1 + • . + X 1 + I ) 

x (A2
2? + A22"-1 + • • + A2 + 1) (22) 

where Ai and A2 denote the eigenvalues of H and.where we have re
placed k — 1 by 2p to indicate the even degree of the polynomials. 

D\ can be shown to be non-negative. In fact, if Ai and A2 are real, 
then each of the two factors on the right-hand side of (22) is positive 
and hence D\ is positive. If Ai and A2 are complex (then necessarily 
complex conjugate), Di is again in general positive and it becomes zero 
only when 

V 
A 2 ' 

exp 
2TT/ 

;' = 1,2, • • -, 2p. (23) 
2p + 1 

Thus, when k is odd, det (H* — I) = 0 only when l - A + f i = 0or when 
(23) is satisfied. Apart from these special cases which are ruled out 
by nondegeneracy, the sign of det (H* — I) coincides with the sign of 
det (H — I) because Di is positive. This leads to the following re
sult: 

Theorem 8. If k is odd and if x* is a P-1 point of G nondegenerate 
with respect to (Gk - I), then the index of x* with respect to (G* - I) 
is equal to its index with respect to (G — I). 

Next, consider the case when k is even. In that case one has 

d e t ( H * - l ) = [ d e t ( H 2 - l ) ] - D 2 (24) 

where 

(1 - A + B)(l + A + B) 5g 0. (17) 

We may again refer to Fig. 1 to relate the index to the geometric 
character of the P-1 point. Now one finds that the condition for the 
index /(x*, G2 — I) to be —1 is represented precisely by the two 90° 
sectors occupied by saddle points and the condition for the index to 
be +1 is represented by the other two 90° sectors occupied by points 
of the other kinds. It is most interesting that when the index of the 
P-1 point is evaluated with respect to the vector field (G2 — l)(x) we 
recover the same geometrical result as in the classical theory of 
Poincare for differential dynamical systems. This is, however, not 
surprising. The difference between the two theories as described in 

D2 = det(Hk~2 + H*-4 + - - -H 2 + l) (25) 

= (Ai*"2 + Ai*"4 + • • • Ai2 + 1)(A2*-2 

+ A2*-4 + . . . + x2
2 + 1). (26) 

Again one finds D 2 to be non-negative. It is always positive if Ai and 

2"Unfortunately, there is not a uniform terminology for the various singular 
points. The singular points of the second kind discussed in [8,11] and referred 
to in this paper are called singular points of type 2 and type 3 in [13]. The names 
used in [14] also differ from those used in this paper. 
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\2 are real. If Xi and X2 are complex, D2 is in general positive except 
that it vanishes when 

Xl = e x P | ± ^ 4 j = l,2,..A~l,- + l,..,k-l. (27) 
X2 I k J 2 . 2 

Thus, for k even det (H* - I) = 0 only when 1 - A + B = 0,1 + A + 
B = 0, or (27) is satisfied. Apart from these cases the sign of det (Hk 

— I) coincides with the sign of det (H2 — I). 
Theorem 9. If k is even and if x* is a P - l point of G nondegenerate 

with respect to (G* - I), then the index of x* with respect to (Gfc — I) 
is equal to its index with respect to (G2 — I). 

A remark about the conditions 1 - A + fl = 0,1 + A + B = 0, (23) 
and (27) might be in order here. When one of these conditions is met, 
det (H* — I) = 0 for some k and the corresponding index cannot be 
determined. Analytically, it is of interest to note that as discussed in 
[11] these condition are precisely the conditions for bifurcation from 
P- l to P- l , from P- l to P-2, or from P - l to P-k. The inapplicability 
of the simple method of index determination of singular points at the 
critical points of bifurcation is perhaps to be expected. For more in
formation on the general topic of bifurcation phenomena of maps the 
reader is referred to [6,7]. 

5 The Index of a P-K Point 
Consider now a P-K solution of G. Such a solution satisfies (6) and 

consists of K elements: x*(j), j = 1,2, • • •, K. Let us take x*0) as a 
typical P-K point. Moreover, let us take (GK — l)(x) to be the vector 
field F. Evidently, x*(j) is a singular point of F. Near x*0), 

F(x) = (H<*>(x*(/)) - Of + P(£) (28) 

where 

£ = x - x * ( / ) (29) 

and P again represents the nonlinear part of F. Here, H ' K ) ( X ( / ) ) is 
however the Jacobian matrix of GK with respect to x evaluated at 
x = x* 0') 

H(K>(x*0')) = [DG K W o - ) (30) 

which may also be put in the form 

H<*>(x*(/)) = [DG(x*0' - 1))] • • • [DG(x*(l»] 
X[DG(x*(.fO)]-"[DG(x*0'))l. (31) 

In this notation the previous H(x*) associated with a P - l point may 
be written as H<1>(x*(l)). 

If, instead of (G+G -1) , we take F to be (GkK - I) where k is a posi
tive integer, we have near *(/') 

F(x) = [ ( H » ( x ' ( ; ' ) ) ) ' - l ] f + P({) 

Assume now that x* (j) is nondegenerate with respect to (G hK — I) so 
that det [(H<K>(x*(/)))* - l] ^ 0. Then by Theorem 4 we have the 
following results: 

Theorem 10. If k is odd and if x* (j) is a P — K point of G nonde
generate with respect to (GkK — I), then the index of x*(j) with respect 
to (GkK - I) is +1 or - 1 , according to whether det [(H^Hx* (/'))) - I] 
> 0 or < 0. 

Theorem 11. If k is even and if x*0) is a P — K point of G non-
degenerate with respect to (GkK — I), then the index of x*0) with re
spect to (GkK — I) i s+1 o r - 1 , according to whether det [(H(if)(x*(/)))2 

- I] > 0 or < 0. 
The geometric character of a P - K point x*(/) is determined by 

H(K>(x*(j)) according to Fig. 1 with H replaced by H<K>(x*)(j)). The 
relation between the geometric character and the index can therefore 
be established in a way similar to that discussed in Sections 4.1 and 
4.2. 

6 The Index of a Jordan Curve With Respect to 
G L - I. 

With all the developments of Sections 4 and 5 at hand, we can now 
examine some general global results of the index theory for point 

mapping dynamical systems. Consider a Jordan curve J and consider 
F(x) = GL(x) — x = (GL - l)(x) where L is a positive integer. Let fi = 
1, /21 fs, • • •, fQ = L be the complete set of positive integer factors of 
L. Then it is obvious that a l lP-1, P-/2 , P-/3, • • •, P-L points of G are 
singular points of F(x), and vice versa. Let N of these points be con
tained in the interior of J and let them be labeled as P,CKi), i = 1,2, 
••-• ,N where Ki equal to one of the factors/,, q = 1,2, • • •, Q, is used 
to indicate the periodicity of the point. To each point P,(K\) is asso
ciated a number ki = L/Ki. We assume that all the Pi(Ki) points are 
nondegenerate in the sense that det [(H'^'HP;))*1 ' - l] ^ 0. The index 
I(Pi(Ki), C * * - l)of each point P;(K,) with respect to (GL - I) can 
then be determined by Theorem 10 if ki is odd or by Theorem 11 if 
ki is even. These considerations permit us to give the following global 
result which is nothing but a restatement of Theorem 2: 

Theorem 12. The index of J with respect to (GL — I) is 

I(J, GL - I) = £ KPiiKi), G*'*< - I). 
£ = 1 

7 The Index of a Singular Point or a Jordan Curve 
With Respect to a General F(x) 

In this section we digress from our main development to discuss a 
point which could lead to further developments of this theory of index 
and thus enhance the usefulness of the theory in the direction of ap
plication. 

It is seen in Sections 4-6 that the index theory for point mapping 
dynamical systems is much more complex than that for differential 
dynamical systems. The theory is also richer in another direction 
which we shall explore very briefly here. In terms of a given point 
mapping G the vector field F may be selected in a very general way, 
not just those possibilities discussed in Sections 4-6. Some of the more 
general ones may yield additional useful information while others may 
not. It is not easy to pursue this discussion in a general way. Let us 
simply take some specific vector fields and see what are the implica
tions. 

7.1 The Index of a Singular Point. Consider the index of a P- l 
point x* of G. Let us take F = G — I, take a very small circle around x* 
as J, and calculate the change of the angle of the vector F along J in 
order to determine the index of x*. If it is —1 then the character of the 
P - l point is as in the region above the line det (H — I) = 0 in Fig. 1. If 
+1 , it is as in the region below the line. Next, we can choose F = G2 — 
I and repeat the calculation. The new index will narrow further the 
region in Fig. 1 to which the P- l point belongs. For example, if in both 
cases the index turns out to be +1 the character of the P - l point is 
necessarily represented by a point located in the 90° sector to the right 
of point E. We can do yet a third calculation by taking F = G2 - G. One 
can readily show that the index of x* with respect to (G2 — G) is given 
by 

I(x*, G2 - G) = + 1 if S ( l - A + B) % 0. (33) 

This will give additional information on the character of the P- l point. 
For example, if for the same P- l point discussed in the foregoing the 
index from the third calculation is —1, then the P- l point has to be 
represented by a point located in the triangular region with E, (0, —1) 
and (0, +1) as the vertices. 

On course, it is not suggested here that the theory of index be used 
to determine the local geometric character of a P-J. point, because if 
x* is known its geometric character can be easily ascertained by di
rectly computing the matrix H(x*). The aforementioned discussion 
does, however, show the richness of the index theory on account of 
the freedom in selecting the vector field F. 

7.2 The Index of a J o r d a n Curve. The same freedom in se
lecting F is of course also available in establishing the global relations 
between a Jordan curve and the singular points contained in its in
terior. However, here one must take into account the possibility that 
a generalized vector field may introduce new kinds of singular points. 
For example, take F = G2 — G. Assuming G(O) = O, the singular points 
of F now include two kinds: (i) all the P - l points of G, and (ii) all the 
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points which G will map into one of the P - l points. The index of the 
Jordan curve J will depend upon not only P- l points but also points 
of the (ii) kind which are contained in its interior. Unless one is also 
interested in the points of the latter kind, the index of J will not have 
much meaning. On the other hand, if it is known that singular points 
of the (ii) kind do not exist either because the mapping is a diffeo-
morphism (one-to-one) or because of other reasons, then the use of 
this F might be advantageous because the singular points in the in
terior of J will still consist of only P - l points and a different relation 
between the index and the P - l points contained in the curve is now 
available. 

The foregoing discussion indicates the vast possibilities by which 
one can apply the index theory to the global analysis. In this paper 
we shall not pursue this aspect further. 

8 A n E x a m p l e of Appl i ca t ion 
It has been well recognized that a nonlinear point mapping dy

namical system can have very complex global responses. To a large 
extent the global behavior of a system is controlled by the distribution 
of its periodic stable as well as unstable solutions in the state space. 
For strongly nonlinear systems the determination of these periodic 
solutions, which could be quite numerous in number, is however not 
a simple task even with the aid of a computer. Often it requires a very 
time-consuming systematic search throughout the state space. This 
task of search can be made considerably easier by utilizing the theory 
of index presented in this paper. The basic idea comes from the ob
servation that if the Jordan curve J is varied in a systematic way, its 
index with respect to a vector field changes by +1 or —1 whenever J 
moves across a singular point of the field. 

To illustrate such an application consider the nonlinear mechanical 
problem treated in [9]; namely, the vibration of a hinged bar subjected 
to a periodic impact load at the free end. The impact load is assumed 
to have a fixed direction. This problem, although nonlinear, permits 
integration of the equation over one period in a simple analytic form. 
This leads to an exact point mapping governing the dynamic behavior 
of the system. For a detailed discussion of this class of problems the 
reader is referred to [9]. Here let us just consider the case where the 
bar is elastically unrestrained but damping may be present. The 
mapping G is found to be 

I —e-2>i i — e -2 j i 
x\(n + 1) = X\(n) — a sin x\(n) -\ xi(n) 

2n 2/t 

X2(n + 1) = — e~2lla sin X\(n) + e~ilAxi.(n) (34) 

where X\(n) is the angular displacement of the bar and x-rfji) is es
sentially the angular velocity of the bar, both at the instant just before 
the application of each impact load, a is a parameter representing the 
magnitude of the load, and n the damping magnitude. 

This system in general has a large number of periodic solutions of 
various periods. To help locate the periodic points of G let us take J 
to be a circle centered at the origin of the (x\, x%j plane and of radius 
R. One can then easily compute the index of J with respect to any 
selected vector field F according to Definition 1. 

To locate the P - l points of G we take F = G — I. A straightforward 
computation shows that as R varies from 0.01 to 3.14 (in steps of 0.1 
or 0.01 in actual computation) the index remains unchanged as shown 
in Fig. 2(a). This is true for all values of a and all values of fi. It con
firms the analytic result that there is only one P- l point at (0,0) within 
the circle of radius R <ir around the origin. When R changes from 3.14 
to 3.15 we find that the index is changed to —1. Hence, there must be 
new P- l points in the annular region 3.14 < R < 3.15 with a total sum 
of their indices equal to - 2 . Analytically one can easily confirm that 
there are one unstable P - l point at (T, 0) and one unstable P- l point 
at (—7T, 0). Both have det (H — I) < 0 and, therefore, have - 1 as their 
indices. This picture of a jump by —2 units at R = it is again true for 
all values of a and fi. 

Consider an example of P-2 points. We take F = G2 — I. Again, take 
various R for the Jordan curve J. For a = 6.7 and n = O.lir one finds 
the variation of I(J, G2 — I) with R as shown in Fig. 2(6). Here the 
change of the index from +1 to - 1 from R = 3.14 to R = 3.15 is again 

I ( J , G - I ) 

1 

FOR ALL VALUES OF a AND n 

'e '3 

( a ) 

R 

i ( J , t s - 1 ) 

\ 

FOR a - 6 . 7 , \i = 0 . 1 TT 

'2 ! 3 

<») 

R 

I ( J , G 3 - I ) 

• 
l 1 

FOR 0 - 3 . 5 , 

k 

(i =0 ,002 n 

' 3 

( 0 ) 

R 

I ( J , 0 4 - I ) 

• 

F 

.l 
l̂ 

OR a = 2 . 5 , 

'2 

H =0 .002 n 

'3 

(a) 

R 

Fig. 2 Variation of l(J, F) with radius R for various values of a and p, 

due to the presence of the P- l points discussed in the last paragraph. 
Other changes of the index are however caused by P-2 points. Ac
cording to the index theory, there are at least two P-2 points in each 
of the annular regions 2.61 < R < 2.62, 2.83 < R < 2.84, and 2.90 < R 
< 2.91. 

An example for P-3 points is taken for the case a = 3.5 and yu = 
0.0027T and is shown in Fig. 2(c). Again, the index change from R = 
3.14 to R = 3.15 is due to P - l points. All other changes at six places 
are caused by the P-3 points. According to the index theory, there are 
at least two P-3 points ip each of the following annular regions: 0.55 
< R < 0.56,1.04 < R < 1.05,1.21 < R < 1.22,1.52 < R < 1.53,1.95 < 
R < 1.96, 2.11 <R <2.12. 

The last example shown in Fig. 2(d) is for P-4 points and is for the 
case a = 2.5 and fi = 0.002-7T. Besides the index change at R = ir due 
to P - l points, there are changes at four other places. For this case a 
computation with respect to G2 - I shows that there are no P-2 points 
in the range of R shown. Therefore, the four index changes are all 
caused by P-4 points. According to the index theory, there are at least 
two P-4 points in each of the following annular regions: 1.09 < R < 
1.10,1.11 < R < 1.12,1.61 < R < 1.62, 2.52 < R < 2.53. 

These examples show searching by expanding a circle. It is a one-
dimensional radial search. One can, of course, also search in the x\ 
and/or ^-directions. No general purpose is served with additional 
examples. The potential use of the theory of index in this direction 
is clear. 
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A Note on the Behavior of Plates 
on an Elastic Foundation 

R. Jones1 and J. Mazumdar2 

I n t r o d u c t i o n 
Numerous attempts have been made in the past to describe the 

behavior of plates on an elastic or viscoelastic foundation. A survey 
of available literature has recently been given in an excellent paper 
by Kerr [1] where various models currently used in the literature are 
discussed in detail. However, all these models correspond to a fric-
tionless plate foundation interface. 

In the present Note, a variational approach is used to examine the 
behavior of plates on an elastic foundation allowing for friction at the 
plate-foundation interface. The approach is a generalization of Vla-
sov's technique and reduces to the Vlasov and Pasternak foundation 
models in the case of a frictionless plate-foundation interface. 

A n a l y s i s 
Consider an elastic foundation of thickness H, Young's modulus 

Es, and Poisson's ratio vs, resting on a rigid base. A plate of flexural 
rigidity D, Young's modulus Ep, Poisson's ratio vp and thickness h, 
lies on the upper surface of this foundation, and is subject to a vertical 
load q(x,y) as shown in Pig. 1. Taking the oxy plane at the upper 
surface with the z -axis directed positively downward, we assume that 
the interface conditions can be written as 

on 2 •0 (1) 

,67i dw\ 
u = — 

2 dx 

_fihdio 

2 dy' 

where /3 is a constant whose value lies between 0 and 1 and in fact, 
depends on the coefficient of friction at the interface. Here u, v, and 
w are the displacement components in the x, y, and z-directions, re
spectively. In the case of a frictionless boundary we have /? = 0. We 
further assume that the horizontal and vertical deformations may be 
expressed in the form 
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Fig. 1 Plate resting on an elastic foundation 

u(x,y,z) = U(x,y)ip(z) 

v(x,y,z) = V{x,y)sj/{z) 

w(x,y,z) = W(x,y)<p(z) 

(2) 

where U(x,y), V{x,y), W(x,y) represent the movements at the foun
dations upper surface and tp{z), \p(z) are functions of the vertical 
distribution of the displacements, chosen in accordance with the 
nature of the problem. Clearly both \p{z) and >p{z) have the value unity 
on the surface 2 = 0 . Based upon experimental evidence, the function 
<p(z) was chosen by Vlasov [2] in the form 

(p(z) = sin h[y(H - z)]/sin hyH (3) 

where 7 is an experimental constant determining the variation, with 
depth, of the vertical displacements. This form for ip has subsequently 
been theoretically justified [3]. In Vlasov's original work, because there 
was no horizontal loading, the horizontal displacements U(x,y), 
V(x,y) were considered negligible in comparison with the vertical 
displacement and did not enter into the subsequent analysis. This will 
not be the case in the present analysis as the horizontal displacements 
are no longer negligible. Indeed substituting for U or V, as given by 
equation (1), into equation (2), we obtain 

2 dx 

fihbw 

u(x,y,z) -i(z) 
(4) 

v(x,y,z) = 
2 oy 

Mz) 

and u = u = 0 outside the region vertically below the slab. Under these 
assumptions the strain energy of the foundation is given" by 
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0,+(f)l dxdyciz (5) 

where E and v are related to the Young's modulus Es and the Poisson's 
ratio fs of the foundation by 

E-
Es (6) 

Here the volume integration is over the entire volume of the foun
dation. Of course, 0 vanishes outside the region of the plate. The re
quirement that the total potential energy IT is minimized, now 
yields 

STT = 5 ( V - SSWqdxdy) = 0, 

which leads to the following partial differential equation: 

D*V4W + kW - 2t*V2W = q{x,y), 

where 

Eh2B2 

(7) 

(8) 

D* = • 

t* = -

3- cHi*k, *—*- rmdz, 
v2) Jo l-v2Jo \dz) 

E CH\ Sh dip}2 , vhEfi rH ,d*p _, 
I \<p + - dz + Z— I \p—dz 

4(1 + v) Jo I 2 dz\ 2(1-v2) Jo dz 
(9) 

Clearly, for /3 = 0 (the case of frictionless plate-foundation interface), 
we obtain the usual two parameter foundation model [4] 

where 

kW - 2tV2W= q(x,y) 

J w2dz 
- . , 0 4(1 + v) 

(10) 

(11) 

Both models, as given by equations (8) and (10) have the same value 
for k, which characterizes the compressive strain in the foundation 
and is equivalent to a Winkler spring constant (or modulus of 
subgrade reaction). However, the shear strain parameters t and t* 
are different in those two models. Clearly, for /3 ^ 0 the rigidity 
coefficient D* is a nonzero quantity. In the case of a relatively thin 
foundation, we may proceed, as in [2], by assuming a linear form for 
the vertical distribution of the displacements in the foundation, given 
by 

^ = ¥ , = _ _ ( 1 2 ) 

so that we obtain 

t* = 

H 

Eh2B2H 

" ~ 12(1 -v2)' 

EH 

12(1 + v) 

1 /3h\3 8W 

\ H ) H 

E 
K H(l - v2)' 

EH 

3 i # i 

H(l + v). 
(13) 

12(1 + v) 

Clearly, when the ratio h/H « 1 which is the case in most engineering 
situations even for thin foundations we have from the foregoing re
lationship 

t* : (14) 

Thus the foundation modulus t* and k remain effectively unaltered 
for P * 0. 

Let us now consider the other extreme case—an infinitely deep 

foundation. In this case, we take the depth profile functions ip and <p 
in accordance with [2] as 

iP = e~7l/az 

tp = e -72 /02 
(15) 

where a is a dimensional parameter of the plate and 71,72 are exper
imental constants. In this case 

D* =• 
Eh2P2a 

8(1 - K 2 )72 

t* = -
Ea 

8(1 + v)y2 

1 - -
7i2/? h 

(71 + 72) « 

E72 

4^71720 H 

(l-v) a. 

(1 - v2)2a 

Ea 
(16) 

8(1 + w)72 

For a thin plate, this again yields t* » t so that as in the case of a thin 
foundation the modulii t* and k are relatively unaffected. We thus 
see that in the case of both a thin and an infinitely deep foundation 
the major effect of /5 ^ 0 is only on the rigidity of the plate. Other 
parameters remain approximately the same. 

We thus see that the response of a plate on an elastic foundation, 
with an arbitrary plate-foundation boundary condition, may be 
modeled using existing computer programs and analysis by simply 
modifying the rigidity of the plate, i.e., altering it from D to (D + D*). 
The only additional experimental quantity required is the parameter 
18 at the interface. 
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Effects of Strain-Hardening on 
Dynamic Responses of Elastic/ 
Viscoplastic Frames 
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In a recent study by the author [1], analytical techniques (com
puterized) applicable to the dynamic analysis of elastic/perfectly 
viscoplastic plane frames were developed and an experimental veri
fication study was made. The latter revealed some discrepancies be
tween the analytical and experimental results primarily due to neglect 
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B R I E F N O T E S 

of material strain-hardening effects in the analysis. The present study 
extends the previous study to include such effects in the analysis and 
obtains excellent analytical/experimental correlation results. 

Consider a mass-less beam element of length I, cross-sectional area 
A, and second moment of inertia / . In terms of stress resultants 
(bending moment M and axial force N) and strain resultants (cur
vature K and centroidal axial strain e), the constitutive equation 
similar to that of Malvern's [2] can be written as 

. Jtf IM-MM I M0\ 
K = — + - ;MS=M0 + EIV \K - — 

EI \ DI* \ EI 
DI* 

. N N 
e = — + 

EA \ DA 

;Ns=N0 + EAri\e 
JVo 
EA, 

(1) 

in which the effect of bending moment/axial force interaction on in
elastic deformation has been neglected. In equation (1), iti s M — Ms 

= 0if|A2T| < | M s | a n d J V s i V - J V s = Oif|iV| < |JV,|;MoandiV0,the 
static yield moment and axial force, respectively, E the Young's 
modulus, and n and D are the material strain-rate-sensitivity con
stants, i\ the strain-hardening parameter, the dots indicate material 
time derivatives, and 

I*= C yin+»lndA (2) 

Within the context of elementary beam theory, the beam element end 
force-deformation ((S) — (ej) relationships for the elastic/perfectly 
viscoplastic case (?) = 0) have been obtained in [1] as 

\$) + [HJIffllxpl = [G]{e] (3) 

Here, the components S;, e; are the bending (£ = 1,2) and axial (£ = 
3) components of the vectors (S] and |e j , respectively, (with clockwise 
and tensile components regarded positive) and JXpl the corresponding 
plastic parts of the end strain resultant vector (x), the matrices [G], 
[/?], and [H] are given by 

[G] = 
\[GM] (0) 

1[0] anil. 
, [H] = 

\GM]=^ 

[HM] 

[0] 

M 2 1 

1 2. 

0) 

. 

• 

w~ 
FA* 
0 

p 

0 0 ' 

/3M 0 

0 PN\ 

WM] = 
2MM 

n+ 1 

: MM if S i + S 2 = 0 (4) 

£i[2 - 3£i/(n + 2)], &[1 - 3fc/(n + 2)] 

. f i [ l - 3fc/(» + 2)], &[2 - 3fc/(n + 2)] 

if S i + S 2 * 0 

1 0 

0 1. 

Here, m = «(/&' (£ = M, iV), a M = EI, aN = EA, /3M = (DI*)", and 
/3N = (DA)", and &/ for 0 < fc < 1 (i = 1,2) are the ith end inelastic 
zone spreading lengths. 

In the presence of strain-hardening (?) ^ 0), the force-deformation 
equations are approximately given by equation (3) with (xP | given by 
(cf., equation (1)): 

lxp!=[ i3] - 1 ^"! ( |S" | = |S i" , s 2 «,s 3 ") ) 

lx) = M-MS) + m-H$n\ 

that is, 

\$\ + [H](S»| = [G)\e)(V * 0) 

(5a) 

(56) 

(6) 

where [a] is a (3 X 3) diagonal matrix whose diagonal elements are EI, 
EI, EA, and S, = S; - S;s (S;s = static parts of S;). In view of equation 
(1), 

|S) = (S) - |S»|, | S ' | = 7, Mix) + (1 - ij)|Sol 

where |So) is the static yield stress resultant vector. The parameters 

£; for the case of entire beam element being in inelastic state now are 
given by 

h = S,/(Si + S2) (£ = 1,2) (7) 

and for the other cases (partially elastic and partially inelastic) de
termined from 

M(zi, t) = [Si - (Si + S2)zi/l](-Di+1 = MAzh t) (i = 1, 2) 

(8a) 

where z\ = t-\l and 22 = (1 — £2)'. Under the assumption of linear 
distribution of Ms(x, t), it can be shown that 

fc(0-(l-u)[S|-(Si + S2)fc]fc/Si (86) 

if the £th end, inelastic zone is contracting. 
In the case that the £th end elastic-plastic zone is expanding, £, can 

be approximately determined from equation (8a) by approximating 
Ms(x, t) at any instant t with a piecewise linear function of x; the 
corner points of the piecewise linear function are located at both ends 
of beam element and the maximum plastic zone penetration fronts 
experienced by the beam element up to current time, t. 

It is interesting to note that the bending parts of the end, force-
deformation equations, equation (6), can also be obtained from the 
assumption of linear variation of Ms in x within an end inelastic zone, 
relationship M = Si — (Si + S^x/l and the complementary energy-
type variational equation 

— bMdx 
0 EI 

+ f ' (lH/DI*)n5Mdx + P (}H/DI*)n8Mdx 
Jo J(l-H)l 

in M, i.e., 8M = 5SX - (&Sj + SS2)x/l. 

It should be noted that the end, force-deformation equations just 
derived can be apparently used in a general plane frame analysis in 
which axial force/bending moment interaction effects are negligible. 
This is because as the number of beam elements used in discretizing 
the frame increases, the Ms function of x would approach to a linear 
one and inelastic zone status within each beam element would ap
proach closer to the one with two or fewer end inelastic zones. 

The equations of motion for a plane frame undergoing arbitrarily 
large joint displacements \u] and composed of rag-beam elements can 
be written as [1] 

Wlfll + E [B]jTiS}j = {Pit)} 0) 
;'-i 

where subscript "j" stands for;'th beam element, [p] is the diagonal 
mass matrix, \P(t)} (which may also be a function of (u)), the pre
scribed joint force vector, [B (|u))]y the jth beam element compatibility 
matrix associated with the joint displacements, 

[B]j\u) (10) 

Equations (5)-(10), together with the following initial conditions, can 
be used to solve \u\, |S),-, and lx); simultaneously 

| u | = \u(tr ~ 0)), \u\ = \u(tr ~ 0)), 

|S),- = \S(tr - 0))u \S»)i = \S'(tr - 0)]i, 

If li = Mr " 0)L |xli = Mtr ~ 0)|i 

at t = tr + 0 (£ = 1, 2 nB) (11) 

where \u(tr — 0)), \S(tr — 0));,. . . were computed from the preceding 
time step of integration (from t = tr-\ to t = tr) if subscript r > 1 and 
prescribed if r = 0. 

The foregoing solution procedure has been implemented in the 
previously developed general purpose computer code "RATE" [1], 
which is designated as RATE 2. Numerical verifications of the com
puter program and analytical predictive techniques have been made 
by comparing the RATE 2 results with the existing solution results 
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Fig. 1 Drop impact responses of a mild steel frame at V0 = 20 mph (32.18 Km/hr) 

(for linear power law case) [5] and experimental frame drop impact 
response results (reported below) with satisfactory results. 

In a laboratory test, a hexagonal plane frame carrying a heavy rear 
mass with total weight W = 116.5 lb (52.955 Kg) was drop-impacted 
onto a narrow stiff pole obstacle at un = 20 mph (32 km/hr) in a nearly 
symmetrical manner. 

Fig. 1(a) shows the numerical convergence pattern of mass decel
eration/time history versus number of beam elements' (JIB) used in 
discretizing the frame structure. A similar numerical convergence 
study was made to determine appropriate integration step size At = 
0.1 ms. The material constants used in the analysis were: E = 30 X 103 

ksi (206.85 Gpa), a0 = static yield stress = 35 ksi (241.325 Mpa), i\ = 
0.0072, D* = (o-0/D)n = 40.4 s - 1 , and n = 5 [3]. Rapid convergence of 
the numerical solution is seen. 

The analytical and experimental results for mass acceleration and 
displacement using the foregoing material constants are shown in Fig. 
1(6) for 7] = 0.01 and 0.0072 cases. Comparison of the analytical/ 
experimental results shows that use of strain-hardening parameter 
value of r) = 0.01 gives somewhat (less than 10 percent) stiffer dynamic 
acceleration and displacement responses than the actually measured 
ones, while use of TJ = 0.0072 gives a better (excellent) correlation re
sult. This is because, for mild steel, coupon test results show that the 
degree of strain-hardening decreases with increase in strain rate [4] 
and 7) = 0.01 represents the absolute maximum value of?; (based on 
the true stress/true strain curve in Fig. 1(c)) even for the static case. 
Also shown in Fig. 1(b) for comparison purposes are the corresponding 
dynamic response results for various special cases in which either 
strain-hardening or strain rate or both effects are absent [1, 6, 7]. 
Strain rate effects are seen to be very important under the impact 
loading, while strain-hardening effects are seen to become increasingly 
important as deformation becomes larger and larger. 

Finally, it should be noted that the computerized study developed 
herein can also be used to predict buckling or parametric resonance 
behavior (through use of the exact nonlinear compatibility matrices 
[B]j in equations (9) and (10) to the extent that the assumption of 
negligibly small axial force/bending moment interaction effects on 
inelastic deformation as well as the other assumptions of the study 
is valid. 
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Fig. 1 Drop impact responses of a mild steel frame at V0 = 20 mph (32.18 Km/hr) 

(for linear power law case) [5] and experimental frame drop impact 
response results (reported below) with satisfactory results. 

In a laboratory test, a hexagonal plane frame carrying a heavy rear 
mass with total weight W = 116.5 lb (52.955 Kg) was drop-impacted 
onto a narrow stiff pole obstacle at un = 20 mph (32 km/hr) in a nearly 
symmetrical manner. 

Fig. 1(a) shows the numerical convergence pattern of mass decel
eration/time history versus number of beam elements' (JIB) used in 
discretizing the frame structure. A similar numerical convergence 
study was made to determine appropriate integration step size At = 
0.1 ms. The material constants used in the analysis were: E = 30 X 103 

ksi (206.85 Gpa), a0 = static yield stress = 35 ksi (241.325 Mpa), i\ = 
0.0072, D* = (o-0/D)n = 40.4 s - 1 , and n = 5 [3]. Rapid convergence of 
the numerical solution is seen. 

The analytical and experimental results for mass acceleration and 
displacement using the foregoing material constants are shown in Fig. 
1(6) for 7] = 0.01 and 0.0072 cases. Comparison of the analytical/ 
experimental results shows that use of strain-hardening parameter 
value of r) = 0.01 gives somewhat (less than 10 percent) stiffer dynamic 
acceleration and displacement responses than the actually measured 
ones, while use of TJ = 0.0072 gives a better (excellent) correlation re
sult. This is because, for mild steel, coupon test results show that the 
degree of strain-hardening decreases with increase in strain rate [4] 
and 7) = 0.01 represents the absolute maximum value of?; (based on 
the true stress/true strain curve in Fig. 1(c)) even for the static case. 
Also shown in Fig. 1(b) for comparison purposes are the corresponding 
dynamic response results for various special cases in which either 
strain-hardening or strain rate or both effects are absent [1, 6, 7]. 
Strain rate effects are seen to be very important under the impact 
loading, while strain-hardening effects are seen to become increasingly 
important as deformation becomes larger and larger. 

Finally, it should be noted that the computerized study developed 
herein can also be used to predict buckling or parametric resonance 
behavior (through use of the exact nonlinear compatibility matrices 
[B]j in equations (9) and (10) to the extent that the assumption of 
negligibly small axial force/bending moment interaction effects on 
inelastic deformation as well as the other assumptions of the study 
is valid. 
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BRIEF NOTES 

of rough elastic spheres are discussed using analytic approximation 
techniques. 

I n t r o d u c t i o n 
Greenwood and Tripp [1] have proposed a model for the elastic 

contact of rough spheres and obtained numerical solutions of their 
fundamental equations, which they have compared with the results 
of the classical Hertz theory. In this Note we show how analytic ap
proximate solutions of their equations may be constructed for all 
values of the appropriate dimensionless parameters. The mathe
matical techniques outlined here are applicable to a general class of 
nonclassical elastic contact problems [2, 3]. 

B a s i c E q u a t i o n s 
Consider the case of contact of a smooth sphere of radius B with 

a rough plane, whose asperities have area density ij and radius of 
curvature /? at their tips. Denoting the standard deviation of the as
perity heights by a and letting $*(s) denote the distribution of as
perity heights (standardized to unit variance), the Greenwood-Tripp 
equations may be written 

p*(p) = nF3/2(d* + p2 + w*(p)~ w*(0)), 

*(p) = V2 f" 
Jo 

PH&HZ/PW, 

w*(0) •• s: P*(Wt 

F3/2(h) •• r (s - h)*/2<t>*(s)ds, 

(1) 

(2) 

(3) 

(4) 

where/(«) = (Ah)zK(z) for 2 < 1 and I(z) = (Ah)K(lh) for 2 > 1, 
K(z) denoting the usual complete elliptic integral of modulus 2. The 
quantities d* and w* represent the minimum separation and dis
placement of the nominal surfaces, scaled with a. Also p. = s/3rjaV2Bfi, 
while p denotes the radial coordinate scaled against y/2Bo and p* 
denotes the dimensionless pressure. 

Greenwood and Tripp obtained iterative numerical solutions to 
their equations for various values of d* and w*(0), deducing the results 
for given values of p. and the dimensionless total load 

--£ 2irpp*(p)dp (5) 

after finding suitable values of d* and w*(0) by trial and error. We 
note that it is in fact possible to work directly with p. and d* (inferring 
w * (0) later if it is needed) by defining 

u*(p) = w*(0)-w*(p)>0 (6) 

and solving the equation 

V*(P) = V2U ("i2-nyp)}FsfiAd* + p-»H&)ds, (7) 

Jo 

the solution of which vanishes at the origin. 

T e c h n i q u e of A n a l y t i c A p p r o x i m a t e So lu t ion 
We construct analytic approximate solutions to equation (7) by a 

"self-consistent" technique. A trial solution involving a small number 
of adjustable parameters is inserted into the right-hand side of (7) and 
the parameters are chosen to insure that, when both sides of (7) are 
expanded in a Taylor series about p - 0, the first few coefficients are 
equal. The trial solution selected must embody the basic physics of 
the problem. We consider two different trial solutions, with over
lapping regions of validity, which allow a complete discussion of the 
problem for all values of p, and d*. 

Solution in the Light Load Regime. One may in principle solve 
(7) by making the substitution u*(p) = £n=iYnP2" in both sides, ex
panding the right-hand side as a power series in p and equating 
coefficients, leading to an infinite set of coupled nonlinear equations 
for the 7„. In practice, if F3/2(h) is sufficiently rapidly decaying as 
h —- <*>, it is necessary to take enough terms (N, say) in the series to 

represent v*(p) near p = 0 and to select the N coefficients so that the 
first N terms on both sides of (7) agree. We illustrate this procedure 
here with the simplest case, viz., v*(p) ~ yp2. 

Replace 2 - 7(£/p) in (7) by the Mellin integral representation [2], 
valid for - 2 < b = Re s < 0, 

2-I(k/p) 
1 rb+i 

2iri Jb-i" 

2ir2(£/Wsds 

sin (™)r(i - y2s)2r(y2 + y2s)2 
(8) 

Initially restricting b to the range — 1 < b < 0, we may interchange 
orders of integration in (7) and deduce that 

v*(p) •• 
p.ir2 pfc+i 

2-rn Jb-i* 

dsp 

sin (TTS)T(I - 1/2s)2r(1/2 + V2s)2 

X C" Z>F3/2(d* + ? - v(&)dt. (9) 
Jo 

Inserting the trial solution i>(£) ~ y£2, setting T = [1 - y]£2 and in
terchanging the order of integration, 

f " i*F3,2(d* + k2~ »(&)d$ <* V2[l - 7]-i/2<s+1> 

r<%» + %)r(%) 
T(V2s + 3) Jo 

x1/2s+2<l>*(d* + x)dx. (10) 

If 0*(t) = 0( t~ 3 ) as t —• <», combining (9) and (10) yields an inverse 
Mellin transform, the integrand of which is holomorphic for —6 < Re 
s < 0, save for simple poles at s = —2 and s = —4. Hence, translating 
the integration contour to - 4 < Re s < —2, 

v*(p)^\— ("° x$*(d* + x)dx\p.[l-y)1/2p2 + 0(p4). (11) 

Denoting the term in curly brackets by d, the self-consistency condi
tion is 7 = p,6[l — y]1/2, hence for 6 > 0 

7 = lk\-/pJ¥TipW2 - p262}. (12) 

The large pd asymptotic form, 7 = 1 - 0([pd]~2), reflects the onset 
[2] of a Hertz limit (macroscopic flattening). 

Inserting u*(£) ~ y£2 into (7), with 7 given by (12), will give an 
approximation for u * (p) for all values of p, provided that p.8 is not so 
large that pd a 1. Also, inserting u*(£) ^ 7£2 into (3) and (5), 

U J * ( 0 ) •• 

To* 

3irp 

16(1 - y)1'2 

2-wp, 

Jo 
x2<t>*(d* + x)dx, 

— 7) Jo 5(1 - 7) 
xbl2<j,*(d* + x)dx. 

(13) 

(14) 

Equations (12) and (14) may be used to deduce a single equation in
volving T, p., and d *, so that plots of any two of these quantities with 
the third held constant are easily constructed for any given asperity 
height distribution 0*. The relation between w*{0), p., and d* may 
be analyzed similarly. 

Solution in the Heavily Loaded (Near-Hertzian) Regime. 
Although the range of validity of the foregoing approximation may 
be extended by taking a higher-order polynomial trial solution, we 
choose instead to exploit the apparent onset of a "Hertz limit" under 
heavily loaded conditions [2,4]. Where k and c are to be determined, 
we set 

pHp)/p*(0)^Fs/2(d* + p2 • v*(p))/F3/2(d*) 

^ J(l - p2/c2)k, p ^ c 

~ 0 p>c 
(15) 

in the right-hand side of (7) and extract a series for u*(p) valid for 
small p (using the Mellin transform technique just employed) 

v*{p) =* \y4p.cFm(d*)Trl'2T(k + 1)/T(k + V2)l 
X |(p/c)2 - %(fe - V2)(p/c)4 + . 

Noting from (15) that 

(16) 
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1 + {F's,2(d*)/Fm(d*)}[p2 - v*(p)\ 

+ 1k{F"m(d*)/Fm(d*)\[p2 - v*(p)f 

~l-kp-*lc2 + lkk(k-l)p4lc\ (17) 

we easily obtain [4] equations for k and c by requiring "self-consis
tency" up to and including terms in p4. Also, with the approximation 
(15), 

T « Trc2p.F3/2(d*)/(l •+ k) (18) 

and 

w*(0) = y2cpFw(d*W2Y(k + 1)/V(k + %). (19) 

A trial solution of the form (15) with k = 2 (and only the parameter 
c to be adjusted) has been employed by Lo [5] in a study of the two-
dimensional analog of the Greenwood-Tripp problem. Lo determines 
c by requiring the two representations of p*(p)/p*(0) in (15) to agree 
at one point (not close to either end) in the interval 0 < p < c. The 
scheme outlined here is a distinct improvement over that of Lo for 
two reasons. Firstly, by matching terms in p2 and p4, we obtain over 
an interval containing the origin a good representation of the pressure 
and its low-order derivatives, while Lo matches up the pressure at one 
point only. Secondly (and more importantly), the class of trial solu
tions chosen includes the Hertz solution p*{p)/p*(0) = (1 — p2/c2)1/2. 
Indeed we find [4] that k —>• \ from the foregoing as p. -* °° at constant 
d*, so that the approximate solution approaches the Hertz solution 
under heavily loaded conditions. 

We furnish below numerical evidence, for a particular asperity 
distribution function, that the regimes of validity of the two ap
proximation schemes overlap. A similar result may be predicted for 
a general distribution function from an examination of the asymptotic 
forms of quantities derived from integrals over the pressure distri
bution, e.g., T, w*(0) and the Greenwood-Tripp "effective radius of 
contact" a* - 0.375T/u>*(0). For each of these quantities, in either 
of the limiting cases p. -* 0 or p -<• <» (at constant d*), the asymptotic 
forms derived from both schemes are in qualitative agreement. For 
example, as p. -* » both schemes predict T = p3, but only the heavy 
load scheme furnishes the proportionality constant required to extract 
Hertz's theory. Similarly as p. -* 0, T a p for both schemes, with dif
ferent proportionality constants, but in this regime the light load 
scheme gives correct results [2, 4]. The proportionality constants 
depend both on the functional form of <j>* and on d*. 

T h e Gauss ian A s p e r i t y H e i g h t D i s t r ibut ion 
In [1] only the Gaussian distribution 0*(s) = (2TC)~1/2 exp (-V2S2) 

was considered in detail. This case is easily discussed here. All the 
integrals over <l>*(s) arising may be evaluated in terms of parabolic 
cylinder functions [6], since for Re s > 0, 

f " JC'-1 'exp (-y2*2 - d*x)dx = T(s) exp (y4d*2)D-s(d*). 
Jo 

We have constructed curves showing the relationship between T, p., 
and d* predicted by our approximation. These are shown in Fig. 1, 
together with the iterative solutions of [1] for comparison. The two 
approximate solution techniques evidently have overlapping domains 
of validity and thus enable the relation between T and p. at constant 
d* to be found for 0 < p. < =>. All other relations of interest in the 
Greenwood-Tripp theory may be discussed similarly without recourse 
to iterative numerical solution of (7), e.g., a* ~ c as jit —• °°. In the 
heavy load regime, where iterative numerical solution of (7) is ex
tremely difficult, the approximate solution technique yields all rele
vant information at the cost of solving a single nonlinear equation (for 
k). A more detailed discussion of a general class of nonclassical elastic 
contact problems in the light and large load regimes has been given 
elsewhere [2, 4]. 
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Fig. 1 The relationship between T (dimensionless total load) and p (dl-
mensionless parameter proportional to the density of asperities and the 
standard deviation of asperity heights) for three values of d* (the dimen
sionless minimum separation of the nominal surfaces): • iterative solution 
drawn from [1]; "self-consistent" approximation for light load (v'(p) 
~ yp2); — "self-consistent" approximation for heavy load (equation (15)) 
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spheric fallout, combustion, fluidization, electrostatic precipitation 
of dust, nuclear reactor cooling, acoustics batch settling, aerosol and 
paint spraying, aircraft icing, flows in rocket tube where small carbon 
or metallic particles are used, lunar ash flows, environmental pollution 
and many others. More recently, the oscillating flow of fluid embedded 
with solid spherical particles is an important prelude to understand 
blood flow in mammalian capillaries in which one attempts to account 
for the presence of red cells in blood. Blood is a suspension of various 
cells (red cells, white cells, platelets) in an aqueous solution called 
plasma having the properties of a Newtonian fluid. There are about 
5 X 109 cells in a milliliter of human blood. The cells occupy about 
40-50 percent of the whole blood by volume. Most of the cells in blood 
are "red cells" (about 94 percent). The red cells make up about 45 
percent of the blood by volume in the average human. Therefore for 
realistic description of blood flow, it is perhaps more appropriate to 
treat the blood as a two-phase fluid that is a suspension of red cells 
in plasma. Also certain observed phenomena in blood flow including 
the Fahraeus-Linquist effect, non-Newtonian behavior cannot be 
explained fully by considering the blood as a single-phase homoge
neous fluid. In order to include some of these properties of blood, it 
seems to be important and necessary to consider the whole blood as 
a fluid-particle system. It is also important to have an estimate of the 
damping that might result from the relative motion of the blood cells 
and plasma in the pulsatile flow. Perhaps the change in the shape of 
a pressure pulse wave as it moves down the artery may be attributed 
to blood cells plasma interaction which in turn is likely to have some 
effect on the impedance (pressure-flow relationship). Nayfeh [1], 
Chow [2], and Kamail [3] studied some problems of blood flow by 
assuming whole blood as a fluid-particle system. It is observed that 
for a long operation, present mechanical pumping systems for blood 
is not suitable as it cause several undesirable effects including me
chanical trauma, hemolysis, and thrombus formation. Keeping this 
in view, recently Sud and Mishra [4] presented a new analysis of 
pumping of blood by means of a noninvasive circulatory assist device 
using the principle of magnetohydrodynamics (since blood is an 
electrically conducting fluid). Their studies indicated that such a 
blood pump would require the application of a slowly moving axial 
magnetic field of strength of about 106 oersted. In view of the foregoing 
discussion it is therefore of some interest to investigate the effect of 
magnetic field on blood flow assuming that the blood constitutes a 
suspension of cells in plasma instead of a simple homogeneous fluid. 
In the following, we analyze the oscillating flow of incompressible, 
viscous conducting fluid which contains suspended inert rigid 
spherical particles between two infinite plates, in the presence of 
transverse magnetic field. Blood cells are actually irregularly shaped 
deformable particles. But for the simplicity one may consider blood 
cells as rigid spherical particles. This limits our study in large arteries 
and veins. In small arteries and veins and capillaries, it is necessary 
to take into account the deformation of cells since the size of the vessel 
is the same or less order of magnitude as the red cells [Allen, De Silva, 
and Kline [5]]. Moreover Bugliarello and Sevilla [6] has already 
pointed out that such deformability is not significant at low shear 
rates. One prime incentive for this work was its possible utility in 
understanding of blood flow in mammalian capillaries in which one 
attempts to treat the blood as two-phase fluid that is a suspension of 
red cells plasma. 

T h e F o r m u l a t i o n of t h e P r o b l e m 
We consider the flow of fluid-particle system infinite in extent in 

the vicinity of two infinite flat plates executive simple harmonic os
cillation with a frequency "a>" in their own planes y = ±h. The x and 
y-axes are taken along and transverse to parallel plates and uniform 
magnetic field acting along y-axis. The appropriate equations in 
nondimensionalized form from Nayfeh [1] are 

du 1 d2u / dv 
— = + — (v —u) — Mu, T — = (u — u), (1) 
at Rdy2 T dt 

where u and v are velocities of fluid and particles, respectively. R is 
the Reynold's number, / is the mass concentration of the particles, 

M = oB2/po) is magnetic parameter, y and t are the nondimensiona
lized distance and time, with respect to h and 1/ai, respectively, and 
T is the relaxation time of the particles nondimensionalized with re
spect to I/to. Initial and boundary conditions are u = v = 0 at t = 0 for 
all y, u = UQ sin t at y = 1 and du/dy = 0 at y = 0, for the flow is sym
metrical about the plan y = 0, only the flow in the region 0 < y < 1 is 
considered. 

S o l u t i o n of t h e P r o b l e m 
The solution of equation (1) subject to the foregoing boundary 

conditions is carried out using the standard techniques and yields the 
following expressions for the fluid and particle velocities: 

u = (u0/(E
2 + F2))[Ey(sm t - F cos t) 

+ Fy(E cos t + F sin t)] + (U0TT/R) £ [ ( -1)" 

X (2n + 1) cos (0.5(2n + l)Try)[|(exp (pit))(l + P I T ) 2 / 

((1 + P l
2 ) ( ( l + P I T ) 2 + /))! + ((exp (p2t))(l + p 2 r ) 2 / 

( U + P 2 ) 2 ( U + P 2 T ) 2 + /))}]] for 0 < y < l (2) 

v = (u0 / ( l + T2)(E2 + F2))[Ey(E - FT) sin t - (F + ET) COS t 

+ Fy(F + ET) sin t + (E - FT) COS t] 

+ ( t W f l ) £) [ ( -1 ) " • (2n + 1) • cos (0.5(2ra + l)Try)[|(exp (pit)) 
n=0 

X (1 +p1T)/((l +pi2)((l +pi r ) 2 +/))} 
+ |(exp (p2t))(l + p2r)/((l + p2

2)((l + P 2 T ) 2 + /))}]] 

+ u0r(exp (-t/r))/(l + T2) for 0 < y < 1 (3) 

v = u0/(l + r2)[sinf - rcost + T exp (-t/r)], at y = l (4) 

where 

E = cosh (V3T). cos (VY); F = sinh (y/X). sin (VD; 
Ey = cosh {yy/X) cos (y\/Y); Fy = sinh (y\/X) sin iyy/Y) 

X = %{x ± (x2 + z2)1'2]; Y = z2/(2(x ± (x2 + z2)1'2)), 
x = MR + frRKl + r2); z = fl(l + / + T 2 ) / (1 + r2); 

Pi = A + S; p2 = A - B ; A = -[((1 + / ) / ( 2 T ) ) 

+ ((2re + l)27r2/(8fl)) + M/2]; B = (l/8flT)[16i?2(l + f)2 

+ T V(2n. + l)4 + 16R2TM(TM + 2/ - 2) 

+ 8fiT7r2(2n + 1 ) 2 ( T M + / - l ) ] 1 ' 2 

Large-Time Solution. In the limiting case t -*• <*>, (2)-(4) reduce 
to 

u = (u0l(E
2 + F2))[Ey(E aint-F cos t) 

+ i y . E c o s t + F s i n i ) ] for 0 « y < l (5) 

u = (u0 / ( l + T2)(E2 + F2))[Ey((E - FT) sin t - (F + ET) COS t) 

+ Fy((F + ET) sin t + (E-FT) cost)] for 0 « y < l (6) 

u = uo[sin t — T cos t]/(l + T2) at y = 1 (7) 

Some Limiting Cases. Solutions for the several limiting cases of 
the problem may be obtained from (2)-(4) in the following man
ners: 

Case 1. Solution for clean (particle-free) magnetohydrodynamic 
flow -* this is the limiting case of vanishing particle density / -* 0. 

Case 2. Solution for two-phase hydrodynamic flow - • the mag
netic field now vanishing, i.e., M —• 0. 

Case 3. Solution for clean hydrodynamic flow -»this is the lim
iting case of vanishing particle density and magnetic field, i.e., / ->• 
0; M —-0. 

Case 4. Solution for two-phase hydrodynamic flow for large time 
- • this is the limiting case t ->• °° and M —• 0. 

Wall Shear Stress. The dimensionless values of the shear stress 
at the wall y = 1 is obtained from (2) as 
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Fig. 1 Velocity profiles for fluid containing particles (U) and fluid-free from particles (Uc) at f = 50 
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Fig. 2 Velocity profiles for particles (V) at / = 50 

(du/dy) y = 1 = (uo/lE2 + F2))[(E sint-F cos t) 

X (VX sinh V X cos V Y - V Y sin V ¥ cosh y/X) 

+ (Ecost+F sin t ) ( v T cosh yfx sin V T 

+ V Y cos V T sinh Vx) ] - (u 0 7r 2 / (2 f l ) ) £ [(2n + l ) 2 

» n=0 

X (exp ( P l t ) ( l + P I T ) 2 / ( 1 + P l
2 ) [ ( l + P l r ) 2 + /]) 

+ (exp (p2 t)( l + p 2 r ) 2 / ( l + p2
2)[(l + p 2 r ) 2 + f]\] (8) 

The wall shear stress for the classical case (clean fluid), (dujdy)y=i 
may be obtained from (8) by taking / ->• 0. 

D i s c u s s i o n a n d Conc lus ions 
To gain an insight into the patterns of flow, the velocities of fluid 

containing particles (u), particles (u), and fluid-free from particles 
(uc) have been plotted, for different values of the magnetic parameter 
M, mass concentration of the particle / and relaxation time of the 
particle T at times t = 50 and t = 500. The value of Reynolds number 
R = 103 and uo = 0.1 have been taken. Figs. 1-4 represent the varia

tions of u, uc, and v with y at t = 50 and t = 500. It is clear that the 
presence of the magnetic field at any instant decreases the velocities 
of fluid containing particles, and fluid-free from particles at any fixed 
point between the plates. It can be seen from the Figs. 1-2 that, as we 
move away from the plate, the effect of increasing the particle-density 
is to reduce both the fluid and particle velocities while there is no ef
fect of particle-density on fluid and particle velocities at the plate. 
Also, as we move away from the plate, the effect of increasing the re
laxation time T of the particle is to reduce both the fluid and particle 
velocities while at the plate fluid velocity is unaffected by T but par
ticle velocity reduces considerably. Graphs further reveal that, as we 
move away from the plate, the change in particle-density / has con
siderable effect on fluid velocity compared to the very small effect due 
to a change in relaxation time T of the particle, whereas change in 
relaxation time of the particle has much more influence on particle 
velocity than a change in particle-density / has. On the other hand, 
very near the plate, the fluid velocity is unaffected by the presence 
of particles while the particle velocity is the same for all particle-
density but depends on relaxation time T of the particle. Therefore 
it may be concluded that the fluid velocity depends more on the mass 
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Fig. 4 Velocity profiles for particles (V) at t = 500 

concentration of the particles than on their size. On the contrary, the 
size of the particles has more influence on the velocity of the particles 
than their concentration itself has. Further, the velocity profile for 
fluid containing particles are similar to that of the fluid-free from 
particles, showing that the presence of particulate phase does not have 
any effect on the manner in which u varies with y. Also, the particle 
velocity v varies in the same manner as u does. Figs. 1-2 further reveal 
that the presence of magnetic field has more effect on fluid velocity 
compared to particle velocity. But after a long time (Figs. 3-4) mag
netic field influences particle velocity more compared to fluid velocity. 

After a long time, the velocities u, uc, and u become periodic but are 
still dependent on the size and concentration of particles suspended 
in the fluid and on the applied magnetic field. Comparison between 
the patterns of flow at short and long time can be made from Figs. 1-4. 
At t = 50, an increase in particle density and in the size of the particle 
leads to a decrease in fluid velocity for the same magnetic field M 
while at t = 500, an increase in particle density leads to an increase 
in fluid velocity but an increase in the size of the particle leads to a 
decrease in fluid velocity for the same magnetic field M. On the other 
hand at t = 50, particle velocity decreases as particle density and size 
of the particle decrease while at t = 500, particle velocity increases 
as particle density and size of the particles increases for the same M. 
Also the effect of magnetic field ony and v increases as time increases 
for every combination of / and T. Furthermore the difference between 
the two values of u, u, and uc at the plate and at the center is very large 
at t = 50, compared to corresponding difference at t = 500 for M = 
1. Also the effect of increasing the magnetic field from M = 0 to M = 
1 is to increase the difference between the two values of u, v, and uc 

at t = 50 but to decrease these diferences at t = 500. Shear stress of 
fluid containing parficles and fluid-free from the particles have been 
plotted in Fig. 5. It is clear that increase in the magnetic field increase 
the shear stress both of fluid containing particles and fluid-free from 
particles. Fig. 5 further reveals that shear stress increases with an 
increase in mass concentration and relaxation time of the particles. 
Also it can be seen in graph that shear stress depends more on the 
mass concentration of the particles than on their size. The effect of 
increasing the time is to reduce the shear stress of fluid containing 
particles but to increase the shear stress of fluid free from particles. 
Furthermore, the difference between shear stresses of fluid and fluid 
free from particles for fixed /, r, and M, decreases with increase in time 
in the beginning. At one time these two stresses come very close but 
after attending this stage, the difference between shear-stresses in
creases rapidly with increase in time. It is interesting to note that at 
t = 40, shear stress of fluid containing particle is almost unaffected 
by the presence of particles for the values of magnetic parameter M 
= 0.1, mass concentration of the particle / = 0.2, and relaxation time 
of the particle T = 0.1. 
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An Iterative Numerical Solution 
for the Elastica With Causally 
Mixed Inputs 

M. Hubbard1 
Fig. 1 A schematic diagram of an elastica of fixed chord length / loaded with 
a moment M and Its relation to a longer fictitious elastica loaded with A 
only 

An iterative numerical solution is given for the case of a thin elastic 
rod whose inputs are simultaneously the positions of the two ends 
and an applied moment at one end. The development begins by 
considering the real rod as an end section of a longer fictitious rod 
loaded with end forces only. Newton's method is then used to obtain 
both the shape of the real rod and its vector restoring force. The re
sults show that both the magnitude and the direction of the restoring 
force are changed considerably from the zero-moment case, espe
cially when the percent deflection of the elastica is small. Such a 
model is a useful alternative to a pure force-deflection one because 
it accounts not only for the direct effect of the applied moment on 
the reaction rigid body but the indirect contribution to the reaction 
force as well. 

N o m e n c l a t u r e 
A = coefficient matrix 
B = stiffness of rod 
E = elliptic integral of second kind 
/ = unknown functional relationship 
k = modulus of elliptic integrals 
K = elliptic integral of first kind 
/ = compressed chord length of rod 
L = total rod length 
M, N - applied end moment 
R = rod restoring force 
s = arc length measured from origin along rod 
u = dimensionless arc length 
a = slope of rod at origin relative to chord direction 
7 = slope of rod at origin relative to J7-direction 
5 = percent deflection (L — l)/L 
<p = amplitude of the elliptic integral 
x, y = position coordinates of points on rod 
Subscripts 

i = iteration index 
Superscripts 
' denotes coordinate system with x-axis parallel to R 

I n t r o d u c t i o n 
The calculation of the shape of the plane curve assumed by a thin 

rod (elastica) loaded by arbitrary forces at its ends, one of the first 
problems in the theory of elasticity, was solved by Buler in 1729 [1]. 
As is well known, the coordinates of the center line of the rod are given 

by elliptic functions which result from the integration of the exact 
nonlinear rod differential equation. 

Most textbooks [2-5] consider only the loading by concentrated 
forces at the ends, which may be termed a "compliance" viewpoint 
since they calculate the resulting deflections. Frequently, when such 
a rod appears as a structural member component of a dynamical 
system, a "stiffness" viewpoint becomes more natural. The rod is 
taken to be a force generator (a nonlinear spring) whose force-dis
placement function characterizes it and the energy storage element 
is said to be in "integral causality" [6, 7]. 

In the case where the ends of the rod are not torque-free, the inputs 
(the positions of the ends and the applied torque) are of a mixed 
causal form and the outputs (the shape of the rod and the restoring 
force) are mixed causally as well. In this Note a solution technique 
is discussed for the calculation of the restoring force and shape of the 
elastica as a function of simultaneous end position and torque inputs. 
The equivalent linear stiffness of the rod is shown to be greatly af
fected by the applied moment. Quantitative results are given. 

M a t h e m a t i c a l Mode l of Elas t ica: Zero Appl ied M o m e n t 
A schematic diagram of the elastica of total length L is shown in Fig. 

1. We here consider one end to be pinned at the origin of the xy 
coordinate system while the other end is located at the point (I, 0), 
I <L, and has an applied moment M. Since the rod is in force as well 
as moment equilibrium the reaction forces at either end are equal and 
opposite and in a direction which defines the x'-axis of a x'y' coordi
nate system to be used in what follows. 

Before treating the more general situation we first summarize the 
theory for the simpler case where the applied moment is zero. Here 
the x and x'-axes coincide and the "compliance" solution is well 
known [2,4, 8]. The reaction force has an x component only and the 
left end is an inflection point of the rod. 

Following [2], we introduce a dimensionless arc length 

and a modulus k related to the slope at the pinned end by 

k = sm —. 
2 

(1) 

(2) 
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Using these variables the nonlinear rod differential equation can 
be integrated twice to yield expressions for the x and y coordinates 
of the rod (see [4 and 2]), 

- = [2\E(u + K,k)- E(K, k)\ - u] (3) 
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An Iterative Numerical Solution 
for the Elastica With Causally 
Mixed Inputs 

M. Hubbard1 
Fig. 1 A schematic diagram of an elastica of fixed chord length / loaded with 
a moment M and Its relation to a longer fictitious elastica loaded with A 
only 

An iterative numerical solution is given for the case of a thin elastic 
rod whose inputs are simultaneously the positions of the two ends 
and an applied moment at one end. The development begins by 
considering the real rod as an end section of a longer fictitious rod 
loaded with end forces only. Newton's method is then used to obtain 
both the shape of the real rod and its vector restoring force. The re
sults show that both the magnitude and the direction of the restoring 
force are changed considerably from the zero-moment case, espe
cially when the percent deflection of the elastica is small. Such a 
model is a useful alternative to a pure force-deflection one because 
it accounts not only for the direct effect of the applied moment on 
the reaction rigid body but the indirect contribution to the reaction 
force as well. 

N o m e n c l a t u r e 
A = coefficient matrix 
B = stiffness of rod 
E = elliptic integral of second kind 
/ = unknown functional relationship 
k = modulus of elliptic integrals 
K = elliptic integral of first kind 
/ = compressed chord length of rod 
L = total rod length 
M, N - applied end moment 
R = rod restoring force 
s = arc length measured from origin along rod 
u = dimensionless arc length 
a = slope of rod at origin relative to chord direction 
7 = slope of rod at origin relative to J7-direction 
5 = percent deflection (L — l)/L 
<p = amplitude of the elliptic integral 
x, y = position coordinates of points on rod 
Subscripts 

i = iteration index 
Superscripts 
' denotes coordinate system with x-axis parallel to R 

I n t r o d u c t i o n 
The calculation of the shape of the plane curve assumed by a thin 

rod (elastica) loaded by arbitrary forces at its ends, one of the first 
problems in the theory of elasticity, was solved by Buler in 1729 [1]. 
As is well known, the coordinates of the center line of the rod are given 

by elliptic functions which result from the integration of the exact 
nonlinear rod differential equation. 

Most textbooks [2-5] consider only the loading by concentrated 
forces at the ends, which may be termed a "compliance" viewpoint 
since they calculate the resulting deflections. Frequently, when such 
a rod appears as a structural member component of a dynamical 
system, a "stiffness" viewpoint becomes more natural. The rod is 
taken to be a force generator (a nonlinear spring) whose force-dis
placement function characterizes it and the energy storage element 
is said to be in "integral causality" [6, 7]. 

In the case where the ends of the rod are not torque-free, the inputs 
(the positions of the ends and the applied torque) are of a mixed 
causal form and the outputs (the shape of the rod and the restoring 
force) are mixed causally as well. In this Note a solution technique 
is discussed for the calculation of the restoring force and shape of the 
elastica as a function of simultaneous end position and torque inputs. 
The equivalent linear stiffness of the rod is shown to be greatly af
fected by the applied moment. Quantitative results are given. 

M a t h e m a t i c a l Mode l of Elas t ica: Zero Appl ied M o m e n t 
A schematic diagram of the elastica of total length L is shown in Fig. 

1. We here consider one end to be pinned at the origin of the xy 
coordinate system while the other end is located at the point (I, 0), 
I <L, and has an applied moment M. Since the rod is in force as well 
as moment equilibrium the reaction forces at either end are equal and 
opposite and in a direction which defines the x'-axis of a x'y' coordi
nate system to be used in what follows. 

Before treating the more general situation we first summarize the 
theory for the simpler case where the applied moment is zero. Here 
the x and x'-axes coincide and the "compliance" solution is well 
known [2,4, 8]. The reaction force has an x component only and the 
left end is an inflection point of the rod. 

Following [2], we introduce a dimensionless arc length 

and a modulus k related to the slope at the pinned end by 

k = sm —. 
2 

(1) 

(2) 
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Using these variables the nonlinear rod differential equation can 
be integrated twice to yield expressions for the x and y coordinates 
of the rod (see [4 and 2]), 

- = [2\E(u + K,k)- E(K, k)\ - u] (3) 
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-2kcn(u+K) 

where 

J»a-/2 
-7= 

0 V I 

dk 

V l - f e 2 s i n 2 | 

(4) 

(5) 

denotes the complete elliptic integral of the first kind which is also 
the real quarter period of the Jacobian elliptic functions en (u) and 
dn (u) [9] and where 

E(u, k) = J * " dn2 (u)du = J " * (1 - k2 sin2 £)1/2d£ (6) 

denotes the incomplete elliptic integral of the second kind and 

cos 0 = en (u). (7) 

Similarly, it can be shown [4] that the arc length is given by 

dk V R /•*/! 
(8) 

V I ~k2 sin2 £ 

If (8) is evaluated at the half length of the rod, s = L/2 (<j> = 0), it be 

IRSB = 2K(k). (9) 

In addition, the distance / between two successive inflection points 
can be calculated [2] to be 

/R~lB = AE(k)-2K(k) (10) 

where E(k) is (6) evaluated when 0 = 7r/2, the complete elliptic in
tegral of the second kind. Equations (9) and (10) can be combined to 
yield an expression for the percent deflection of the rod 

L~ 1 

•I 
• = 2 (11) 

Now given a rod of length L loaded by a force R, k can be deter
mined from (9) and the percent deflection of the rod from (11), thus 
yielding the compliance function of the rod. Alternately, if the com
pressed length I is given rather than the applied force R, (11) can be 
used to find k since E(k)/K(k) is single-valued; then (9) yields R as 
the stiffness solution. When the load is nondimensionalized by the 
Euler critical buckling load and plotted versus the percent deflection 
the results are as shown in the middle curve of Fig. 2. 

S o l u t i o n for A r b i t r a r y M and 1 
We now turn our attention to a more complicated situation than 

that just summarized. Specifically we desire the solution for the 
elastica when an applied moment M is given in addition to the com
pressed length /, the most general case depicted by Fig. 1. Since no 
known analytical solution exists we seek an iterative solution based 
on the following heuristic reasoning. 

When a moment M (positive as shown in Fig. 1) is applied to the 
rod, a y component of the reaction force R is induced at the free 
end 

Rv -Mil. (12) 

It is not hard to see that there exists a fictitious rod with length U > 
L, stiffness B, and loaded only with end forces equal vectorially to 
R, which coincides exactly with the real rod over its left-hand end 
segment of length L. At each point in this segment the real and ficti
tious rods have the same displacements, reaction forces, and interior 
moments. Hence, we solve the problem of the fictitious rod instead, 
and note that equations (1)-(10) apply to it when suitably inter
preted. 

Suppose we have initial guesses RQ and 70 for the magnitude of the 
force and the slope of the pinned end relative to the x '-axis, respec
tively. Evaluating (2) and (1) for a = y0, R = flo and s = L gives the 
corresponding values of the nondimensional arc length u and the 
modulus k for the fictitious rod. Then using (5) and subsequently (3) 

* 2 B 

L 
Fig. 2 Elastica along-chord restoring force versus percent shortening for 
various values of the applied moment including the zero moment case 

and (4) allows calculation of the coordinates (x', y') of the interior 
point located at an arc length L from the left-hand end. The interior 
moment (which is equal to the required applied moment for the same 
i?o and 70) and the chord length can then be determined from 

and 

M 0 = Roy' 

*o=(* ' 2 + y , 2 ) 1 / 2 

(13) 

(14) 

Almost certainly these determined values of Mo and /o will not equal 
the given applied moment M and compressed length I. But since y' 
= y'(y, R) and x' = x'(y, R), then for small changes dy and dR from 
the initial guesses the corresponding perturbations in the coordinates 
are given by 

dy' dy' 

dy dR 

, , dx' dx' 
dx' = — dy + — dR 

dy dR 

(15a) 

(156) 

and the perturbations in the interior moment and chord length are 

dl 

dM 

x^dx^ / d / x dx' y' dy'-

I dy I dy I dR I dR 

R ^ y' + Rdy' 

•A (16) 

67 " dR 

This allows corrections to the initial guesses to be calculated using 
Newton's method 

dl' 

dM 
(17) 

where 
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dl 
dM, 

= 
I-la 

M-M0, 

This procedure can be repeated as many times (i) as required to 
make the guess (7;, Ri) yield (Mi, k) arbitrarily close to the pair (M, 
I). Although the partial derivatives in (16) could in principle be de
termined either analytically or numerically, the latter would probably 
be preferred since the whole scheme is fundamentally a numerical 
one. 

Results 
Using the principles of dimensional analysis [10] it is possible to 

deduce the general form of dependence of the parameters of the 
problem in the most general case. If we apply the Buckingham ir 
theorem, three dimensionless groups emerge; RL2/B, ML/B, and b/L. 
Hence the first is related functionally to the second two and we may 
write 

R = B/L2f(ML/B, b/L). (19) 

Numerical solution of the procedure was accomplished on a com
puter for a given rod (B, L) and for a range of values of the input 
variables M and 5. In light of (18), however, such a specific solution 
can be generalized to an elastica of arbitrary length and stiffness. 
These general results are also shown in Fig. 2. Since the y component 
of R is always given by (12) only the component Rx parallel to the 
chord is plotted. 

It is clear from the figure that the deviation of the along-chord force 
component Rx is strongly dependent on the percent deflection b/L 
with an apparent singularity at b/L = 0 when M ^ 0. This singularity 
disappears for a real beam since the deflections due to axial strain 
(neglected in the analysis above) eventually become (as b/L —• 0) large 
compared to those due to bending. For b/L < 0.1, a rather nominal 
applied moment M produces large changes in the force Rx. As an ex
ample for a rod of length 5 m, stiffness 1955 Nt-m2 and chord length 
4.75 m, an applied moment of 250 Nt-m gives a 32 percent increase 
or a 28 percent decrease, depending on its sign, from the zero-moment 
restoring force of 770 Nt. 

We here note that a somewhat more complicated solution similar 
to that developed previously could be given for the case where parallel 
moments are applied at both ends of a rod whose compressed length 
is fixed. In this case the restoring force R will be a function of a third 
dimensionless group NL/B involving the second applied moment N, 
and the shape and interior moment will be identical to those of an 
unknown interior section of a longer fictitious rod loaded with R only. 
This interior section could then be found using an iterative method 
similar to that described previously. 

General applications of the model have been mentioned in the in
troductory section; a further specific application is the modeling of 
the pole vault [8]. In all cases, the additional complexity of the model 
accounting for the effects of end applied moments yields two advan
tages. First, the applied moment can now enter directly into the roL 

tational dynamic equations for the object connected to the rod. But 
in addition (and more subtly), the indirect effect of the applied mo
ment, on the translational equations through the rod restoring force, 
is accounted for. 

Conclusions 
An iterative solution for the shape and restoring force of a thin 

elastic rod with end positions given and loaded with an applied mo
ment at one end has been formulated. Numerical studies were carried 
out which indicate that the applied moment can significantly magnify 
or attenuate the rod restoring force and also change its direction rel
ative to the chord, especially when the percent deflection of the rod 
is small (b/L < 0.1). The additional complexity of such a model would 
be desirable when the rod connects rigid bodies which can exert such 
a torque, because the complete effects of the torque are then detailed, 
including contributions to both translational and rotational equa
tions. 
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On Stress Boundary Conditions 
in Shell Theory 

J. Lyell Sanders, Jr.1 

Boundary conditions on the stress-functions of shell theory in terms . 
of given boundary data are derived. The results are shown to be fully 
equivalent to the Kirchhoff boundary conditions and have the same 
form for all first-approximation theories of thin shells. 

In his book Goldenveizer [1] derives the stress-stress function 
relations in shell theory by a process which involves a preliminary 
construction of two vector fields obtained by integration of edge forces 
and couples along arbitrary curves on the middle surface. The same 
ideas appear in the works of Chernykh [2] and Pietraszkiewicz [3,4] 
and are used for a variety of purposes. The expression of an integrated 
form of the stress boundary conditions in terms of stress functions 
follows from the results of these authors but does not seem to have 
been explicitly stated. The results in question are produced in the 
present Note and are shown to be equivalent to the Kirchhoff 
boundary conditions and to have exactly the same form in all ac
ceptable first-approximation theories of thin shells. Special results 
for shallow shells and for the semi-infinite circular cylinder have been 
given previously [5, 6]. 

The present derivation begins with a restatement of some of the 
fundamental formulas of the statics of thin shells. Associated with 
an arbitrary smooth curve T on the middle surface there is defined 
a vector of forces per unit length T' expressible in terms of surface 
components as follows: 

Tl = Tax'ia + Qn' (1) . 

In terms of the membrane stress measure N"P (unsymmetric and 
unmodified) and the transverse shear stress measure Qa one has 

Tt> = N»f>na, Q = Q"na (2) 

The notation and the formulas from differential geometry used herein 
occur frequently and will be assumed to be familiar. There is likewise 
defined on T a vector of couples per unit length S' tangent to the 
middle surface expressible in terms of surface components by 
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dl 
dM, 

= 
I-la 

M-M0, 

This procedure can be repeated as many times (i) as required to 
make the guess (7;, Ri) yield (Mi, k) arbitrarily close to the pair (M, 
I). Although the partial derivatives in (16) could in principle be de
termined either analytically or numerically, the latter would probably 
be preferred since the whole scheme is fundamentally a numerical 
one. 

Results 
Using the principles of dimensional analysis [10] it is possible to 

deduce the general form of dependence of the parameters of the 
problem in the most general case. If we apply the Buckingham ir 
theorem, three dimensionless groups emerge; RL2/B, ML/B, and b/L. 
Hence the first is related functionally to the second two and we may 
write 

R = B/L2f(ML/B, b/L). (19) 

Numerical solution of the procedure was accomplished on a com
puter for a given rod (B, L) and for a range of values of the input 
variables M and 5. In light of (18), however, such a specific solution 
can be generalized to an elastica of arbitrary length and stiffness. 
These general results are also shown in Fig. 2. Since the y component 
of R is always given by (12) only the component Rx parallel to the 
chord is plotted. 

It is clear from the figure that the deviation of the along-chord force 
component Rx is strongly dependent on the percent deflection b/L 
with an apparent singularity at b/L = 0 when M ^ 0. This singularity 
disappears for a real beam since the deflections due to axial strain 
(neglected in the analysis above) eventually become (as b/L —• 0) large 
compared to those due to bending. For b/L < 0.1, a rather nominal 
applied moment M produces large changes in the force Rx. As an ex
ample for a rod of length 5 m, stiffness 1955 Nt-m2 and chord length 
4.75 m, an applied moment of 250 Nt-m gives a 32 percent increase 
or a 28 percent decrease, depending on its sign, from the zero-moment 
restoring force of 770 Nt. 

We here note that a somewhat more complicated solution similar 
to that developed previously could be given for the case where parallel 
moments are applied at both ends of a rod whose compressed length 
is fixed. In this case the restoring force R will be a function of a third 
dimensionless group NL/B involving the second applied moment N, 
and the shape and interior moment will be identical to those of an 
unknown interior section of a longer fictitious rod loaded with R only. 
This interior section could then be found using an iterative method 
similar to that described previously. 

General applications of the model have been mentioned in the in
troductory section; a further specific application is the modeling of 
the pole vault [8]. In all cases, the additional complexity of the model 
accounting for the effects of end applied moments yields two advan
tages. First, the applied moment can now enter directly into the roL 

tational dynamic equations for the object connected to the rod. But 
in addition (and more subtly), the indirect effect of the applied mo
ment, on the translational equations through the rod restoring force, 
is accounted for. 

Conclusions 
An iterative solution for the shape and restoring force of a thin 

elastic rod with end positions given and loaded with an applied mo
ment at one end has been formulated. Numerical studies were carried 
out which indicate that the applied moment can significantly magnify 
or attenuate the rod restoring force and also change its direction rel
ative to the chord, especially when the percent deflection of the rod 
is small (b/L < 0.1). The additional complexity of such a model would 
be desirable when the rod connects rigid bodies which can exert such 
a torque, because the complete effects of the torque are then detailed, 
including contributions to both translational and rotational equa
tions. 
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Boundary conditions on the stress-functions of shell theory in terms . 
of given boundary data are derived. The results are shown to be fully 
equivalent to the Kirchhoff boundary conditions and have the same 
form for all first-approximation theories of thin shells. 

In his book Goldenveizer [1] derives the stress-stress function 
relations in shell theory by a process which involves a preliminary 
construction of two vector fields obtained by integration of edge forces 
and couples along arbitrary curves on the middle surface. The same 
ideas appear in the works of Chernykh [2] and Pietraszkiewicz [3,4] 
and are used for a variety of purposes. The expression of an integrated 
form of the stress boundary conditions in terms of stress functions 
follows from the results of these authors but does not seem to have 
been explicitly stated. The results in question are produced in the 
present Note and are shown to be equivalent to the Kirchhoff 
boundary conditions and to have exactly the same form in all ac
ceptable first-approximation theories of thin shells. Special results 
for shallow shells and for the semi-infinite circular cylinder have been 
given previously [5, 6]. 

The present derivation begins with a restatement of some of the 
fundamental formulas of the statics of thin shells. Associated with 
an arbitrary smooth curve T on the middle surface there is defined 
a vector of forces per unit length T' expressible in terms of surface 
components as follows: 

Tl = Tax'ia + Qn' (1) . 

In terms of the membrane stress measure N"P (unsymmetric and 
unmodified) and the transverse shear stress measure Qa one has 
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S1' = S«*;„ (3) (7). By means of (12) and (14) there follows from (7) and these defi-

Bending moment and twisting moment scalars Mn and Mt associated 
wi thT Fl = Fl - Mtn

l + Mt.on'o (15) 

Mn = MaPnanp, Mt = M^njfi 

can be used to express Sa in the form 

S" = Mnt
a -Mtn" 

(4) 

(5) 

The combined moment about the origin of forces and couples as
sociated with T is given by the vector 

C = S' + eijkx'Tk (6) 

The Goldenveizer vectors are constructed in terms of integrals of T' 
and C'. Choose any reference point x'0 on the middle surface, let s be 
arc length measured away from x'0 along a curve V, and let t" and na 

point ahead and to the right as usual. Define F', Ml, and H' associ
ated with r by the equations 

Jo 
T'ds, Ml Cc'ds, Hl = M< - €ijkxJFk (7) 

If the shell is in equilibrium in the absence of surface loads then, by 
the laws of statics, F' and Ml must vanish when the integrals are 
calculated over any closed path. Equivalently stated: F\ M', and thus 
H', defined in (7), are independent of the path T and hence constitute 
vector fields on the middle surface provided the shell is in equilibrium 
without surface loads. 

The surface components x" and \p of Hl, defined by 

H' = x'Vo + ^n' (8) 

and the normal component F'n1 of F' are Goldenveizer's stress 
functions. As a consequence of Slnl = 0 for arbitrary T the following 
relation holds between the tangential components of F' and the sur
face gradient of Hl, 

Flx\« = ga0t^H\^ (9) 

The normal component of F' is an independent stress function. 
However, as has been shown [7-9], the equilibrium equations and 
stress boundary conditions of shell theory can be written exactly (in 
various ways) in terms of "combined" or "reduced" stress measures 
and in all cases the reduced stress measures are expressible in terms 
of the components of H' alone. 

Now consider T to be the edge of a shell on which T> and S', or 
equivalently the five variables T", Q, Mn, and Mt, are given. These 
five physical boundary conditions collapse into the four Kirchhoff 
boundary conditions for the four "effective" edge loads given by Mn 

and 

T"=T« + MMtP 

V=Q + 
dMt 

ds 

Let a vector T' be defined by 

Ti = T"x\a+ Vn> 

The vectors Tl and T' are simply related to each other 

P = fl ~ "f iMtn1) 
ds 

Likewise define Sl (see equations (3) and (5)) by 

Si = S"s:;„, ~8a = Mnt
a 

(10) 

(11) 

(12) 

(13) 

and define C as in (6) but with S1 and T' on the right. The following 
relation, similar to (12) holds: 

Ci = Ci-eijk—(MtXJnk) 
ds 

(14) 

In a similar fashion define F', M', and H' by formulas analogous to 

Hl = H> - djkMtfiixi - xi)nk
0 (16) 

For the final result it is important to note that Hl and the scalar Flt' 
differ from Hl and F't' only by terms with the constant factor Mt,o, 
and that P ' and W are expressible in terms of effective edge loads 
only. The vector t' referred to here is the Cartesian form of the unit 
vector t" tangent to P. 

That the terms with the constant factor Mt,o are inconsequential 
to the result can be argued as follows. The vector H' is the static-
geometric analog of the displacement vector U\ and F' is the analog 
of the rotation vector Ul. These facts are more or less obvious and are 
simply borrowed here from the general theory for reasons of brevity. 
Interpreted in terms of displacements and rotations the expres-

and 

U'= -tijkMtfi{xi - xi)nl 

fi' = Mt,on\, 

(17) 

correspond to a rigid-body motion and have no effect upon strains. 
Therefore, by analogy, the terms with Mt,o in Flt' and Hl can be de
leted with no effect upon stresses or the statement of stress boundary 
conditions. The point is perhaps reinforced a bit by the fact that the 
effective variables Mn and T' can be expressed in terms of if' and Fltl 

by the following formulas (not involving Mt,o) which are not difficult 
to derive. 

m- d 

T' = — 
ds 

w d R i • 

M „ = — t' 
ds 

F't'n1 + (nhi - nh>) 
ds 

(18) 

where v' is the Cartesian form of na. 
One more relation is needed before stating the final result. From 

(9) there follows: 

dW 
piti 

dn 
•n' (19) 

The final result is this: the stress boundary conditions in terms of 
stress functions, fully equivalent to the Kirchhoff boundary condi
tions, are given by 

o n T (20) 
(Tp,«-bapXli)na= -F't1. 

where F' and Hl on Y are constructed in terms of the boundary data 
according to equations (6) and (7). Since H' is the fundamental stress 
function vector common to all first-approximation shell theories, the 
statement of stress boundary conditions in the form (20) holds in all 
cases (as does the analogous form of the statement for displacement 
boundary conditions). Of course, the expressions for the stress mea
sures in terms of the stress functions xa and 4* depend upon how the 
stress measures are defined. Given in the form (20), the boundary 
conditions require no additional statements for the case in which T 
has corners. 
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An Unusual Closed-Form 
Solution for a Variable-
Thickness Plate on an 
Elastic Foundation 

H. D. Conway1 

In troduc t ion 
This short Note is concerned with the unsymmetrical bending of 

a particular circular plate of variable thickness which is supported 
by a Winkler-type elastic foundation. What is remarkable about this 
solution is that it is in a closed form which is far simpler than the 
constant-thickness disk solution which involves Kelvin functions. 
Moreover the quartic characteristic equation which is involved in the 
present solution possesses particularly simple roots. Aside from its 
academic interest and possible design applications, this solution is 
exact and could possibly be used for assessing the accuracy of various 
approximate methods of solutions. 

4(1 - 3v + 2n2) dF [12rc2(l - v) + k/D0] p_Q (2) 

r3 dr r4 (Com.) 

This is a homogeneous linear equation. If we write F = Arx, the 
characteristic equation is then 

X4 + 4X3 + 2(2» - n2)\2 - 4(2 - 2v + n2)\ 

+ n4 + 6n2 • 12i/2 + — F = 
Do 

0 (3) 

A most remarkable thing about this quartic equation is that it readily 
factors in the form 

(X + 1 + ft)(X + 1 - fa)(\ + 1 + fa)(X + 1 - fa) = 0 (4) 

since comparing respective coefficients of X2 and X leads to the same 
equation! Multiplication of the terms in equation (4) and comparison 
with equation (3) leads to 

fa2 + fa2 = 6 - 4» + 2n2 

fa2fa2 = n4 + 8n2 + 5 - 4v - 12m2 + 
Do 

(5) 

from which fa and fa are readily obtained, and the solution is 

w = [ A i r - 1 - ^ + A2r-l+h + Aar-1'^ + A4r-1+^] cos nB. (6) 

This exact closed-form solution is valid for any boundary conditions 
on the inner and outer edges of the disk. Of particular interest is the 
fact that the solution is in terms of elementary functions, and not the 
Kelvin functions bern, bei„, ker„, kei„ for a constant-thickness plate. 
Finally it should be mentioned that a similar simple closed-form so
lution has been found[2] for the free nonsymmetrical vibrations of 
a disk having D = Dor6. 
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A n a l y s i s 
The governing differential equation for the disk is readily obtained 

from the three equations of equilibrium in polar coordinates and the 
three moment-curvature relationships [1]. For a flexural rigidity 
D = D(r) the governing differential equation for the nonsymmetrical 
bending of the plate is the very complicated 

r , , dD 

DV4w + — 
dr 

d3w 2 + v d2w 

dr 3 r dr2 

•_2_dw 

r2 dr 

d2D 

' dr2 

2 d3w 3 d V 

r2 drdd2 r 3 d0 2 

i>2w v dw v d2w 

dr2 r dr r2 dd2 • q —kw (1) 

with the usual plate notation and where k is the elastic foundation 
modulus. Writing D = Dor4 and w = F(r) cos nd, where n is an integer 
for a complete disk, we find for the complementary solution that 

\dr2 r dr r2j\dr2 r dr r2 / 

8dsF 4($ + v)d2F 

dr3 dr2 
(2) 

Buckling of a Column With 
Nonlinear Restraints and 
Random Initial Displacement1 

W. B. Day2 

The nondimensional form of the equation for lateral displacement 
w of a column under load X and initial random displacement ewl is 
given by wiv + 2\w" + w - w3 = —2Xeu>J. This paper derives an ex
pression for the average value of X for which buckling occurs. 

The nondimensional form of the equation for the lateral displace
ment w of a column with load X, a nonlinear restoring force, and initial 
random displacement ew"0 is given by 

' + 2\w" + w • -2X e w"0 (1) 

and is derived in [1, 2], The discussion that follows applies to any 
homogeneous boundary conditions. For simplicity we use w(±v) = 
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An Unusual Closed-Form 
Solution for a Variable-
Thickness Plate on an 
Elastic Foundation 

H. D. Conway1 

In troduc t ion 
This short Note is concerned with the unsymmetrical bending of 

a particular circular plate of variable thickness which is supported 
by a Winkler-type elastic foundation. What is remarkable about this 
solution is that it is in a closed form which is far simpler than the 
constant-thickness disk solution which involves Kelvin functions. 
Moreover the quartic characteristic equation which is involved in the 
present solution possesses particularly simple roots. Aside from its 
academic interest and possible design applications, this solution is 
exact and could possibly be used for assessing the accuracy of various 
approximate methods of solutions. 

4(1 - 3v + 2n2) dF [12rc2(l - v) + k/D0] p_Q (2) 

r3 dr r4 (Com.) 

This is a homogeneous linear equation. If we write F = Arx, the 
characteristic equation is then 

X4 + 4X3 + 2(2» - n2)\2 - 4(2 - 2v + n2)\ 

+ n4 + 6n2 • 12i/2 + — F = 
Do 

0 (3) 

A most remarkable thing about this quartic equation is that it readily 
factors in the form 

(X + 1 + ft)(X + 1 - fa)(\ + 1 + fa)(X + 1 - fa) = 0 (4) 

since comparing respective coefficients of X2 and X leads to the same 
equation! Multiplication of the terms in equation (4) and comparison 
with equation (3) leads to 

fa2 + fa2 = 6 - 4» + 2n2 

fa2fa2 = n4 + 8n2 + 5 - 4v - 12m2 + 
Do 

(5) 

from which fa and fa are readily obtained, and the solution is 

w = [ A i r - 1 - ^ + A2r-l+h + Aar-1'^ + A4r-1+^] cos nB. (6) 

This exact closed-form solution is valid for any boundary conditions 
on the inner and outer edges of the disk. Of particular interest is the 
fact that the solution is in terms of elementary functions, and not the 
Kelvin functions bern, bei„, ker„, kei„ for a constant-thickness plate. 
Finally it should be mentioned that a similar simple closed-form so
lution has been found[2] for the free nonsymmetrical vibrations of 
a disk having D = Dor6. 
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A n a l y s i s 
The governing differential equation for the disk is readily obtained 

from the three equations of equilibrium in polar coordinates and the 
three moment-curvature relationships [1]. For a flexural rigidity 
D = D(r) the governing differential equation for the nonsymmetrical 
bending of the plate is the very complicated 

r , , dD 

DV4w + — 
dr 

d3w 2 + v d2w 

dr 3 r dr2 

•_2_dw 

r2 dr 

d2D 

' dr2 

2 d3w 3 d V 

r2 drdd2 r 3 d0 2 

i>2w v dw v d2w 

dr2 r dr r2 dd2 • q —kw (1) 

with the usual plate notation and where k is the elastic foundation 
modulus. Writing D = Dor4 and w = F(r) cos nd, where n is an integer 
for a complete disk, we find for the complementary solution that 

\dr2 r dr r2j\dr2 r dr r2 / 

8dsF 4($ + v)d2F 

dr3 dr2 
(2) 

Buckling of a Column With 
Nonlinear Restraints and 
Random Initial Displacement1 

W. B. Day2 

The nondimensional form of the equation for lateral displacement 
w of a column under load X and initial random displacement ewl is 
given by wiv + 2\w" + w - w3 = —2Xeu>J. This paper derives an ex
pression for the average value of X for which buckling occurs. 

The nondimensional form of the equation for the lateral displace
ment w of a column with load X, a nonlinear restoring force, and initial 
random displacement ew"0 is given by 

' + 2\w" + w • -2X e w"0 (1) 

and is derived in [1, 2], The discussion that follows applies to any 
homogeneous boundary conditions. For simplicity we use w(±v) = 
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B R I E F N O T E S 

On Dispersion of Periodically 
Layered Composites in Plane 
Strain 

and substitution into the equation of motion leads to two wave 
equations for the potentials <t> and tp with velocities ci and C2 

C l = [(X + 2p)/p]M c2 = [ix/rr0]m (3) 

A. A. Golebiewska1 

In troduc t ion 
In recent years, considerable attention was paid to wave propaga

tion in periodically layered elastic composites, cf. references [1-5], 
the analysis being based on the theory of Floquet waves. While the 

which denote longitudinal and transversal wave velocities in the un-
primed solid. The same holds true for the primed solid. By solving the 
equations of motion in terms of potentials and making use of (2), we 
obtain u and u'. The expression for each vector involves four coeffi
cients Ci, C2, C3, Ci and C\, C2, C3, C4', respectively. Continuity 
and periodicity conditions for displacements and tractions across the 
interfaces supply 8 equations: these form a system of 8 homogeneous 
linear equations for the 8 unknown coefficients C, and C,-' (i = 1 , . . . , 
4). For nontrivial solutions the vanishing of the determinant 
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(4) 

behavior of SH-waves (horizontally polarized shear waves) in such 
systems is reasonably well understood, [4], wave propagation in plane 
strain has been only incompletely explored. This is due to the fact that 
such waves involve a complicated coupling between P-waves (com-
pressional waves) and SV-waves (vertically polarized shear waves). 
The dispersion equation is given by an 8 X 8 functional determinant 
which in the past has been evaluated numerically. 

It is the purpose of this Note to show that the dispersion equation 
for plane strain can be expanded in closed form. This should facilitate 
considerably a later systematic analysis. It is shown further, that if 
the ratio of the two thicknesses of the composite is small, the disper
sion relation uncouples into two independent equations, representing 
two separate surfaces in the frequency-wave number space. This 
uncoupling is rigorously valid for any ratio of elastic constants and 
mass densities of the two constituents of the composite. The system 
corresponds to the case of matrix being reinforced by thin, periodically 
distributed layers. 

T h e G e n e r a l D i s p e r s i o n R e l a t i o n 
The composite under consideration consists of periodically alter

nating layers of two different isotropic and homogeneous elastic 
materials, perfectly bonded along their plane interfaces. The prop
erties of the two materials are described by the Lame constants X, /x 
(or Poisson's ratio, v) and X', p,' (or v'), as well as the mass density p 
and p'. The thicknesses of the two layers are 2h and 2h', respectively. 
The Cartesian system of reference is chosen in such a way that the 
bonding planes are normal to the y-axis. 

For plane strain the components of the displacement fields u and 
u' in the composite are 

is required, where 

A± = exp [±iira/2], B± = exp [±iir/3/2], 

0 = « 2 - f 2, T = exp [ipr]} 

A±' = exp [±iirea'/2], B'± = exp[±i«/3'/2], 0 ' = a'2 - f2 (5) 

6 = h'lh, y •• lip df 

" H'P c 2 ' 2 

1 = 
•2v •2v' 

2(1 - v)' 2(1 - !>') 

„ 2h co . 2h , 2h, 
« = , f = — « i , Vs"—ky, p = 7r(l + e) 

•K C2 IT • TT 

2h 
a = Vfi2 - f 2 = — V(Wc2)2 - fe2

2 

2h 
a' = Vff2^2 - f 2 = — V(a)/c2 ')2 - ft*2 

2h 
/3 = V < H - f 2 = — V ( W c i ) 2 - * , 8 , 

TV 

2/l 

u = u(x,yN, t), : v(x, yN, t), w = 0 (1) 

where yjv is a local coordinate of the iVth layer normal to the interface, 
chosen in such a way that —h<yN< h. The same holds for u'. 

The fields u and u' can be represented by the Lame potentials, e.g., 
foru 

3' = vV 2 f i 2 / ' - f2 = — V(Wci')2 - ft*2 (6) 
IT 

Here 01 is the circular frequency, kx and ky are the wave numbers in 
the x and y-direction, respectively. After cumbersome and lengthy 
algebraic manipulations, it is possible to expand the determinant (4) 
and represent the dispersion equation in the form 

2 T 2 [ - L 1 ( C „ C 0 + ca'Cp>) + L2s«s/3(1 - ca'Cp<) + L3sa>sp<(l - cace) 

- L^CaS/lCa'Sp - LeSaCflSa'Cf3' - LsCaSpSa>Cp - LgSaCpCa'sQ' 

+ ( i l l + Ll2)caCf,Ca'Cp + VzLloSoSflSc'S^] + T ( T 2 + 1) 

X [-L4(cac„' + cpcp) + LBSfiSp> + LeSaSa- + Li{cacp + cpea') 

+ LgSpS,,' + LgSaSp] + 2T2LU + (T 4 + 1)L12 = 0 (7) 

where 

d $ d\p _ d $ dtp 

dx iiyN' dx dyN 
(2) 
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L2 = a'/3'[(a/3P!P2)2 + (P^e ) 2 ] , 
L 3 =a /3[ (P 1 P 4 ) 2 +(« ' |3 'P 2 P 6 ) 2 ] ( 

L4 = 2al3a'P'P1PbP3Pe, 
L6 = aa 'P3P6[(Pi/?)2 + (P6/3')2L 
Le = 0^ 'P 3 P 6 [ (P 1 a) 2 + (P6<*')2], 
L 7 = 2a/3a'l3'PsPeP2Pi (8) 
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L 8 = a / J ' P s P e l t f W ) * + P4
2] 

L9 = /3a'P3P6[(P2a/3')2 + P4
2] 

Lio = ( a / ? ) W + (a/3a'/3')2P2
4 + P44 

+ («'/?')2P54 + (P3P6)2[(a/3')2 + (<*W2] 
L n = a ^ a ' ^ K P i P s ) 2 + (P2P4)2] 
L12 = aPa'l3'(PaP6)* (8) 

(Cont.) 

cos 7ra'e, c„' = cos irfi'i 

sin jra'e, s^' = sin 7r/?'e (9) 

c„ = cos ira, c@ = cos irfi, c 

s„ = sin ira, Sp - sin TT/3, SC 

and 

P 1 = (r
2n2 + 2 r 2 ( 7 - l ) , P 2 = - 2 f ( 7 - l ) , P 3 = 7« 2 , 

P 6 = <r2ft2 

P4 = f[2f 2(7 - 1) + fi2(<r2 - 7)], Ps = 7 ^ 2 - 2r 2(7 - D (10) 

It is to be noted that the dispersion relation (7) is still a complex 
function even for real values of kx and ky (or f and ?)) because r = exp 
dPV)-

Simpl i f i ca t ion for Smal l h'/h 
The dispersion relation (7) is very complicated due to coupling 

between P and SV-waves in the same layer as well as between two 
diferent layers. It can be shown, however, that a significant simplifi
cation, i.e., uncoupling, can be achieved if the ratio e = h'/h of the 
thicknesses of the two layers is assumed to be much smaller than 
unity. Indeed, in this case the dispersion relation (7) separates into 
two independent relations 

2a7n2(c„ - <:„) + TT£(2a7fi27)S, - J2sa) = 0 (11) 

2PyQHci3 - c„) + 7re(2/?7fi V , - JlSfi) = 0 (12) 

where 

Ji = a2l[a2W + 4{2y(y - I)] 

+ l'[yQ2 - 2f 2 ( T - l ) ] 2 - 2f 2[2f 2 ( 7 - l ) 2 + 7Q2] (13) 

J2 = o>2[<r2Q2 + 4 ^ ( 7 - D( l + l'(y ~ 1))] 
+ [7fl2 - 2 ^ ( 7 - l ) ] 2 - 2 f 2 [ 2 ^ ' ( 7 - l ) 2 + 7fi2] (14) 

It is to be emphasized that the uncoupled dispersion relations (12) 
and (13) are valid for small ratios of the thicknesses of the two layers, 
but for arbitrary values of the elastic constants and the densities in 
the two constituent materials. 
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Discontinuity and Moment 
Dipole Along a V-Butt 
Weld in Plates 

R. H. Bryant1 and C. H. Wu2 

P r o b l e m 
One of the commonly used practices in welding steel plates is the 

so-called V-butt weld, Fig. 1. The shrinking of the weld after cooling 
gives rise to a discontinuity in slope across the weld line. The magni
tude of this angular distortion is, of course, governed by many factors 
[1]. If, however, we make the assumption that the discontinuity in 
slope is purely a function of the weld, then this angular distortion 
becomes a given condition for the welded structure to satisfy. We show 
in the following that such a discontinuity is directly related to a mo
ment dipole so that the deformation of the welded structure may be 
determined by direct integration via the introduction of an appro
priate Green's function. 

S o l u t i o n 
Let (Zi,Z2) be rectangular Cartesian coordinates and letD be the 

domain of the (Zi,Z2)-plane characterizing the shape of a plate. 
Certain boundary conditions are specified along dD, the boundary 
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^ zv: i BEFORE 

AFTER 

Fig. 1 V-butt weld 

of D. The deflection of the plate at Z = x due to a unit load applied at 
Z = y may be written as 

G(x;y) = r 2 l n r + fl(x;y), ( l )3 

where 

r = | x - y | , (2) 
and Pi is a regular function for all x and y in D. Moreover, G satisfies 
the boundary conditions specified on dD. 

Let C be a simple curve in D defined by 

C: Z„ ^z„(s) s e I\h<s < l2\ (3) 

where s measures the arc length along C. The unit tangent and normal 
vectors t and n of C are 

i = z'„(s)e„, n = eaffz'n(s)ea, (4) 

where eap are the components of the two-dimensional alternator, and 

3 All quantities in this Note are written in dimensionless form. Thus, if L is 
the length scale, then the force scale is 87r[£^3/12(l - v2)L] where E, v, h are, 
respectively, Young's modulus, Poisson's ratio, and thickness. 
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It is to be noted that the dispersion relation (7) is still a complex 
function even for real values of kx and ky (or f and ?)) because r = exp 
dPV)-

Simpl i f i ca t ion for Smal l h'/h 
The dispersion relation (7) is very complicated due to coupling 

between P and SV-waves in the same layer as well as between two 
diferent layers. It can be shown, however, that a significant simplifi
cation, i.e., uncoupling, can be achieved if the ratio e = h'/h of the 
thicknesses of the two layers is assumed to be much smaller than 
unity. Indeed, in this case the dispersion relation (7) separates into 
two independent relations 

2a7n2(c„ - <:„) + TT£(2a7fi27)S, - J2sa) = 0 (11) 

2PyQHci3 - c„) + 7re(2/?7fi V , - JlSfi) = 0 (12) 

where 

Ji = a2l[a2W + 4{2y(y - I)] 

+ l'[yQ2 - 2f 2 ( T - l ) ] 2 - 2f 2[2f 2 ( 7 - l ) 2 + 7Q2] (13) 

J2 = o>2[<r2Q2 + 4 ^ ( 7 - D( l + l'(y ~ 1))] 
+ [7fl2 - 2 ^ ( 7 - l ) ] 2 - 2 f 2 [ 2 ^ ' ( 7 - l ) 2 + 7fi2] (14) 

It is to be emphasized that the uncoupled dispersion relations (12) 
and (13) are valid for small ratios of the thicknesses of the two layers, 
but for arbitrary values of the elastic constants and the densities in 
the two constituent materials. 
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One of the commonly used practices in welding steel plates is the 

so-called V-butt weld, Fig. 1. The shrinking of the weld after cooling 
gives rise to a discontinuity in slope across the weld line. The magni
tude of this angular distortion is, of course, governed by many factors 
[1]. If, however, we make the assumption that the discontinuity in 
slope is purely a function of the weld, then this angular distortion 
becomes a given condition for the welded structure to satisfy. We show 
in the following that such a discontinuity is directly related to a mo
ment dipole so that the deformation of the welded structure may be 
determined by direct integration via the introduction of an appro
priate Green's function. 
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of D. The deflection of the plate at Z = x due to a unit load applied at 
Z = y may be written as 

G(x;y) = r 2 l n r + fl(x;y), ( l )3 

where 

r = | x - y | , (2) 
and Pi is a regular function for all x and y in D. Moreover, G satisfies 
the boundary conditions specified on dD. 

Let C be a simple curve in D defined by 

C: Z„ ^z„(s) s e I\h<s < l2\ (3) 

where s measures the arc length along C. The unit tangent and normal 
vectors t and n of C are 

i = z'„(s)e„, n = eaffz'n(s)ea, (4) 

where eap are the components of the two-dimensional alternator, and 

3 All quantities in this Note are written in dimensionless form. Thus, if L is 
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respectively, Young's modulus, Poisson's ratio, and thickness. 
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e„ the unit vectors associated with Z„. The radius of curvature p(s) 
of C is defined by 

-n(s). (5) 
ds p(s) 

For convenience, we introduce an orthogonal coordinate 0 such that 
01 measures the distance from z(s) along n(s) and 02 = s. It follows that 
the transformation between 0„ and Z„ is just 

Za = fA9i,02) = zJ62) + 6ina(82). (6) 

Our objective is to determine the deflection u)(x) of the plate sat
isfying the boundary conditions implied by (1) and the jump condi
tion 

6l=+t 

lim -«>(f(01,s)) = 0(s), (sel). (7) 

9l=-< 

We shall show that the solution is just 

w(x) = - — f 2 GD(x;s)<Ms) ds, (8) 
4TT « / / I 

where Go is Green's function for a moment dipole (see, e.g., [2]) 

I d 2 

Gz3(x;s): 
d0j 

G(x;l(0i,s)) 
9l=0 

(9) 

Let H(s) be the unknown moment dipole at s associated with the 
pair of couples 

ff(»). -t(«) at 0! = + - , 
e 2 

H(s) 
t(s) at 0i ^ 

Then 

w(x) = f 2 H(s)G B (x ; s )ds 
J / , 

The function Go defined by (9) and (1) may be written as 

GD{x;s) = 2 In rc+RD(x;s) 

where 

rc = | x - z ( s ) | 

(10) 

(11) 

(12) 

(13) 

Rni*;s) = 1 + 2 
[ x - z ( s ) ] - n ( s ) 

+ d0f 
R(x;t(6us)) 

8l=0 

(14) 

It is clear that Rr> is regular for all x in D and all sel. The solution 
(11) may now be written as 

where 

U)(x) = U)](x) + U)2 (x), 

u>i(x) = 2 C 2H(s)lnrc(x;s)ds, 
Jh 

w2(x) = f *RD(x;s)H(s) ds. 
Jh 

(15) 

(16) 

(17) 

The function H(s) must be determined in such a way that (7) is sat
isfied. Since w2 is regular, w\ must satisfy the. jump condition (7). 

The function w\(x) is just the deflection of an "infinite membrane" 
subjected to a "line load" H(s). It follows that 

— u>i(f(0i,s)) ' = -4TTH(S) = <t>(s) (18) 
^01 Jei=-e 

This establishes the validity of (8). 

E x a m p l e 
Consider the semi-infinite plate (x\ > 0) with a built-in support 

along xi = 0. The function G defined by (l)-is [2] 

lim 
(—0 

G(x;y) = 2 x i y i - r 2 l n n / r , (19) 

r2 = (x1-yl)*+(x2-y2)\ r{ = (JCI + yi)2 + (*2 - y2)2. (20) 

Let a weld be located along the straight line C defined by (c.f. (3)) 

C: zi = s cos a, z2 = b + s sin a, l\ < s < h, (21) 

where b and a are constants. Then t and n defined by (4) are just 

t = cos a e i + sin a e2, n = sin a ei — cos ae2. (22) 

The orthogonal coordinates 8„ defined by (6) are just 

0i = n, 02 = s (23) 

where n measures the distance from C along n. 
Substituting the aforementioned relations into (9), we obtain 

GD(x;s) •• 
d2G . . a^G „ d2G . 
— - sin2 a H cos2 « — 2 sin a cos a 
.dyi &y2 dyidy2 

y=z(s) 

(24) 

The following identities are useful for the purpose of integrating 
(8) 

d2G dGi dFi 

dy? dyi ?>y 2' 

d2G dF2 _ dG2 

dy\ dyi dy2 ' 

d2G dG2 dGi 

dyidy2 dyi dy2 

where 

Gi(x;y) = 2*i - (*i - yi) |1 + In ^ • (* i + y i ) - j , 
T-i 

/ r2\ r2 

G2(x;y) = - ( * 2 - y2) 1 + In - 1 + (*2 - y2) - j , 

r\ r2 lr2 \ 
•fi(x;y) = (x2 - y2) In — - x2 — + y2 - j - 11 

-Mxi-yi) . _ , * 2 - y 2 , , _ 1 x 2 - y 2 

tan l V tan 1 

xi-yi xi + yi. 
F2(x;y) = (*i - yi) In ^ + *! ^ + yi £5 - 1 

- 4 ( x 2 - y 2 ) tan - i * ' - y i + t a „ - i * 1 + y i 
- + tan" 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 
x2 - y 2 * 2 - y2j 

If we now assume that the property of the weld along C is independent 
of s, then 0(s) is a constant and (8) becomes 

<t> r ' 2 

w(x) = I GD(X;S) ds. 
4ir Jh 
Aw Jh 

Substituting (24) into (32) we get 

w(x) = - — [F2(x;z(s)) cos a + Fx(x;z(s)) sin a\T=% 
4fl-

(32) 

+ 4 sin 2a 

(h — II)4TT sin a cos a 

( x i - z i ( s ) ) ( x 2 - z 2 ( s ) ) r 
(x2 - z2(s))zi(s) 

rl 
ds. (33) 

For welds parallel to the coordinate axes, the explicit results are 

Horizontal Weld: (z2 = b, l\< Z\ < l2) 

i»(x) = - f- [F2(x;l2,b) - F2(x;h;b)], 
4ir 

Vertical Weld: (zi = a, l\<Z2< I2) 

(34) 
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w(x) = - f- [FiimM - FilwM- (35) Mx, 
2<j>xi(xi + vxl) 

V (*? + *l)2 (37) 

Finally, for a single semi-infinite weld along the *i-axis, the solution F o r " = 0-3. the contours of constant -l$irMX2X2/<t> are plotted in Fig. 

" ,Ui,*2) = — m - 2 2 tan *— 
7T \ X 2 / 

(36) 

3. 

R e f e r e n c e s 
1 Masubuchi, K., "Analytical Investigation of Residual Stresses and Dis-

Using h, the plate thickness, as the length scale L the contours of M ^ ^ " a l °f the Amerimn Welding Society' V o 1-3 9 'N o '1 2>D e c-1 9 6 0< 
constant 8WTT/<I> are given in Fig. 2. The dimensionless bending mo
ment Mx,x, is 

2 Timoshenko, S., and Woinowsky-Krieger, S., Theory of Plates and Shells, 
McGraw-Hill, New York, 1959, p. 327. 

Formulation of Stochastic 
Linearization for Symmetric or 
Asymmetric M.D.O.F. Nonlinear 
Systems 

P-T. D. Spanos1 

A formulation of the method of stochastic linearization so that it is 
applicable for symmetric or asymmetric nonlinear systems is pre
sented. Formulas for the generation of the equivalent linear system 
are given. The solution procedure for determining nonstationary or 
stationary system response statistics is outlined. 

I n t r o d u c t i o n 
The method of stochastic or equivalent linearization has been 

studied and used extensively. Typical examples of pertinent research 
effort may be found in references [1-6]. In this Brief Note a formu
lation of the method is given so that it is applicable for both symmetric 
or asymmetric nonlinear systems and for the approximate determi
nation of both stationary and nonstationary system response statistics 

1 Assistant Professor of Engineering Mechanics, The University of Texas 
at Austin, Assoc. Mem. ASME. 

Manuscript received by ASME Applied Mechanics Division, August, 1978; 
final revision, September, 1979. 

to Gaussian random excitations. It is clarified, however, that several 
of the concepts introduced in the present formulation could have been 
developed by a careful examination of pertinent references. Fur
thermore, it is emphasized that the intent of the present Note is to 
extend, generalize, and systematize existing linearization proce
dures. 

E q u a t i o n for the R e s p o n s e Offset 
Consider the stochastic vector differential equation 

Mx + Ci + Kx + f(x, x) = w(t)g(t), (1) 

where a dot above a variable denotes differentiation with respect to 
the independent variable t; M, C, K are constant nXn matrices; f(x, 
x) is an re-vector function of the dependent variable x(t) and its de
rivative x(£); g(t) is time-dependent deterministic vector and w(t) 
is a stationary delta-correlated and zero-mean stationary Gaussian 
process; that is (w(t)w(t + T ) ) = &(T), where the symbols (•) and 8 
stands for the operator of mathematical expectation and the Dirac 
delta function, respectively. 

In general the nonlinear function f (x, x) can be asymmetric with 
respect to (x, x); that is, 

f(x, x) j£ - f ( - x , -HO (2) 

Due to the asymmetry, the solution of equation (1) may not have a 
zero mean value. Therefore, it is assumed that 

x(t) = xm(t) + x(t), (3) 
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A formulation of the method of stochastic linearization so that it is 
applicable for symmetric or asymmetric nonlinear systems is pre
sented. Formulas for the generation of the equivalent linear system 
are given. The solution procedure for determining nonstationary or 
stationary system response statistics is outlined. 
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The method of stochastic or equivalent linearization has been 

studied and used extensively. Typical examples of pertinent research 
effort may be found in references [1-6]. In this Brief Note a formu
lation of the method is given so that it is applicable for both symmetric 
or asymmetric nonlinear systems and for the approximate determi
nation of both stationary and nonstationary system response statistics 
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to Gaussian random excitations. It is clarified, however, that several 
of the concepts introduced in the present formulation could have been 
developed by a careful examination of pertinent references. Fur
thermore, it is emphasized that the intent of the present Note is to 
extend, generalize, and systematize existing linearization proce
dures. 

E q u a t i o n for the R e s p o n s e Offset 
Consider the stochastic vector differential equation 

Mx + Ci + Kx + f(x, x) = w(t)g(t), (1) 

where a dot above a variable denotes differentiation with respect to 
the independent variable t; M, C, K are constant nXn matrices; f(x, 
x) is an re-vector function of the dependent variable x(t) and its de
rivative x(£); g(t) is time-dependent deterministic vector and w(t) 
is a stationary delta-correlated and zero-mean stationary Gaussian 
process; that is (w(t)w(t + T ) ) = &(T), where the symbols (•) and 8 
stands for the operator of mathematical expectation and the Dirac 
delta function, respectively. 

In general the nonlinear function f (x, x) can be asymmetric with 
respect to (x, x); that is, 

f(x, x) j£ - f ( - x , -HO (2) 

Due to the asymmetry, the solution of equation (1) may not have a 
zero mean value. Therefore, it is assumed that 

x(t) = xm(t) + x(t), (3) 
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where xm is a deterministic offset vector and x(t) is a zero-mean 
random vector. 

Substituting equation (3) into equation (1) gives 

Mx + C x + K x + Mxm + C x m + Kxm + . 

f(x + xm, x + xm) = w(t)g(t). (4) 

Ensemble averaging equation (4) yields 

Mxm + Cxm + Kxm + (1(x + xm, x + xm)> = 0 

Equation (5) can be put in the form 

where 

and 

(5) 

(6) 

(7) 

P = [ ° 7 1 (8) 
^ _M-iK _ M - I C J ( 8 ) 

Rm = - M - 1 ^ ° . . (9) 
(1(x + xm, x + xm)) 

The symbol T as a superscript denotes the operation of tran
sposing. 

Generation of an Equivalent Linear System 
In order to obtain an approximate solution for the system described 

by equation (4), an equivalent linear system is constructed in the 
form 

Mi+[C + C\x+[K + K]x = w(t)g(t), (10) 

where matrices C and K are such that 

(tTt) = minimum. (11) 

The error vector c is defined by the equation 

e = Cxm + Kxm + W + *m, * + xm) -Ci- Ex. (12) 

The criterion expressed by equation (11) must be satisfied for every 
member of the class of solutions of equation (11). 

Due to the fact that the excitation w(t) is Gaussian, the response 
of the linear system described by equation (10) will be Gaussian. 
Therefore, the minimization criterion, equation (11), should be sat
isfied for every Gaussian vector x(i). Applying the theory developed 
in references [4-6] it can be shown that a necessary condition for the 
minimization criterion to be satisfied is 

where 

and 

(xFT) = X[K, C}T, 

iT=aT,iT) 

X= (xx7"), 

F = Mxm + Cx„, + Kxm + f(x + xm, x + xm). 

(13) 

(14) 

(15) 

(16) 

For every zero-mean Gaussian vector it can be proved under quite 
general restrictions that [5] 

frT-Jwg)7, 
(17) 

where J (F/x) denotes the Jacobian of the components of the vector 
F with respect to the components of the vector x. 

The requirement of zero mean for the vector x for the validity of 
the general equation (17), makes evident the usefulness of the form 
of the solution x assumed in equation (3). 

Combining equations (13) and (17) leads to the equation 

X 

Equation (18) is satisfied when 

IK, C] \d I * 

Componentwise, equation (19) may be rewritten as 

IdFA 
kij = 

and 

dx. 

Cij-

i = 1,. 

(18) 

(19) 

(20) 

(21) 

If the matrix X is nonsingular, equation (19) will be the unique so
lution of equation (18). Furthermore, it can be shown by using a 
theorem of reference [6], that in this case the matrices R and C yield 
an absolute minimum for < e Te). If the matrix X is singular, equation 
(18) will not possess a unique solution. However, it can be proved, by 
using again the theorem of reference [6]', that in this case the linear 
system constructed by means of equation (19) will be no worse than 
any other linear substitute system in terms of the value of (fTe). 

Solution Procedure 
Equation (10) can be rewritten as 

where 

and 

x = Px + tu(i)R, 

/ 0 

-M-HK + K) -M-HC + C) 

(22) 

(23) 

(24) - f° 
The symbols / and 0 represent, respectively, then the n X n identity 
and zero matrices. 

Applying standard methods of analysis of linear systems, equation 
(22) leads to the following ordinary differential equation for the co-
variance matrix X: 

X = PX + XPT + RRT (25) 

Equations (6) and (25) are nonlinear ordinary differential equations 
which can be solved numerically for specified initial conditions. For 
stationary response, X = 0, xm = 0, they become 

0, 

and 

PXS + XSP
T + RsRj •0, 

(26) 

(27) 

where the subscripts designate stationary values. 
Equations (26) and (27) are nonlinear algebraic equations which 

again can be solved numerically. 
It is noted that if the initial displacement and velocity of the system 

are equal to zero, and the nonlinear force is symmetric, that is 

«x, x) = - f ( -x , -x) , (28) 

equations (6) and (26) are satisfied for xm = 0. Therefore, only equa
tion (25) or equation (27) must be solved in order to determine the 
nonstationary or stationary, respectively, form of the matrix X. 

Reliability and Efficiency of the Linearization Scheme 
The discussed linearization procedure has been used for the 

system 

x + &x + x[l + 3e + 3cx + ex2] = \/2J3w(t)g(.t), x(0) = x(0) = 0 

(8 = 0.10, t = 0.2, g(t) = exp (-0.025J) - exp (-0.25J) (29) 
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Pigs. 1 and 2 show results for the mean and the standard deviation 
of the response. In these figures data obtained by Monte Carlo sim
ulations with ensemble size equal to 300 are shown as well. It can be 
seen that the solutions for the offset (mean) and the standard devia
tion of x(t) obtained by the two methods compare quite well. Not only 
the proper trends are observed but the actual numerical values are 
in close agreement. It is interesting to note that the reported studies 
have indicated that the linearization scheme is approximately 500 
times more efficient computationally than the Monte Carlo simulation 
in determining the response statistics. 

S u m m a r y and Conc lus ions 
A formulation of the technique of equivalent linearization has been 

presented so that it is applicable for the determination of nonsta-
tionary and stationary response statistics of symmetric or asymmetric 
nonlinear dynamic systems. On the basis of the preceding analytical 
developments and the reported numerical studies it may be concluded 
that the discussed method is reliable and computationally effi
cient. 
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Bounds on Modal Damping by a 
Component Modes Method 
Using Lagrange Multipliers 

E. H. Do well1 

The author has deduced recently some general properties for the 
natural frequencies of dynamical systems which are composed of 
several components [1]. The question has arisen as to whether anal
ogous results may be obtained for damping characteristics of such 
systems.2 Earlier Klein and the author [2] and, also, Hallquist and 
Snyder [3] had studied modal damping by component mode methods 
using Lagrange multipliers. It is shown that for two component sys
tems a simple explicit formula for modal damping is available once 
the total system natural frequencies are calculated. From this result 
it is also shown that in a special, but important, case an explicit ana
lytical bound is obtainable for damping without the necessity of 
computing first the system natural frequencies. In the general case 
a simple numerical procedure is suggested for obtaining bounds. 

Most of the foregoing results are obtained by assuming lightly 
damped components as are typical of structural systems. While this 
approximation could be eliminated in a formal theory, in practice it 
is often useful and of sufficient accuracy particularly for lightly 
damped systems. TKe advantage of this assumption is that it avoids 
the necessity of dealing with the adjoints of the system components 
and the consequent complex eigenfunctions. 

General Analysis 
The results of reference [2] are set out first. Conceptually disas

semble the total structure into Af-components [4] for which one knows 
for each mode the following information, the generalized masses, 
M/'™', the damping coefficients, £/'"', the natural undamped 
frequencies, a>/n), for j = 1, 2 , . . . - , °°; n = 1 , . . . , N. For the total 
system, one has kinetic energy, potential energy, and the damping 
dissipation function as given in (l)-(3). 

T = % E £M/">gy2<»> 
n=1j=1 

U= V2 E E MjWuj^qjtW 
n=lj=l 

D = y2 E E 2{jW wjW MjW qfw 
n=l ;'=! 

(1) 

(2) 

(3) 

One also has interconnecting (constraint) conditions between the 
components, 

fr=71 E &•/"> QjM = 0; r = l,...,R (4) 
n - l ; = l 

where the ft-/"* are determined by the geometry of the connections 

1 Professor, Department of Mechanical and Aerospace Engineering, Princeton 
University, Princeton, N.J. 08544. Mem. ASME. 

2 The author would like to thank Prof. Hold Ashley who asked this question 
and thus motivated the present study. 
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The author has deduced recently some general properties for the 
natural frequencies of dynamical systems which are composed of 
several components [1]. The question has arisen as to whether anal
ogous results may be obtained for damping characteristics of such 
systems.2 Earlier Klein and the author [2] and, also, Hallquist and 
Snyder [3] had studied modal damping by component mode methods 
using Lagrange multipliers. It is shown that for two component sys
tems a simple explicit formula for modal damping is available once 
the total system natural frequencies are calculated. From this result 
it is also shown that in a special, but important, case an explicit ana
lytical bound is obtainable for damping without the necessity of 
computing first the system natural frequencies. In the general case 
a simple numerical procedure is suggested for obtaining bounds. 

Most of the foregoing results are obtained by assuming lightly 
damped components as are typical of structural systems. While this 
approximation could be eliminated in a formal theory, in practice it 
is often useful and of sufficient accuracy particularly for lightly 
damped systems. TKe advantage of this assumption is that it avoids 
the necessity of dealing with the adjoints of the system components 
and the consequent complex eigenfunctions. 

General Analysis 
The results of reference [2] are set out first. Conceptually disas

semble the total structure into Af-components [4] for which one knows 
for each mode the following information, the generalized masses, 
M/'™', the damping coefficients, £/'"', the natural undamped 
frequencies, a>/n), for j = 1, 2 , . . . - , °°; n = 1 , . . . , N. For the total 
system, one has kinetic energy, potential energy, and the damping 
dissipation function as given in (l)-(3). 

T = % E £M/">gy2<»> 
n=1j=1 

U= V2 E E MjWuj^qjtW 
n=lj=l 

D = y2 E E 2{jW wjW MjW qfw 
n=l ;'=! 

(1) 

(2) 

(3) 

One also has interconnecting (constraint) conditions between the 
components, 

fr=71 E &•/"> QjM = 0; r = l,...,R (4) 
n - l ; = l 

where the ft-/"* are determined by the geometry of the connections 

1 Professor, Department of Mechanical and Aerospace Engineering, Princeton 
University, Princeton, N.J. 08544. Mem. ASME. 

2 The author would like to thank Prof. Hold Ashley who asked this question 
and thus motivated the present study. 
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between components and the <?/"> are modal generalized coordinates. 
The Lagrangian is 

L = T-U+ £ \rfr 

where the Lagrange multipliers, Xr, are as yet unknown forces of 
constraint. After Goldstein [5], Lagrange's equations are 

d li>L\ dL dD 

and 

+ — = 0 
dt \d(jjl dqj dqj 

Using (1), (2), (4) to evaluate L and substituting the result along with 
(3) into the foregoing gives 

MjM[qjM + 2£,-<"> <o/n) qjM 

+ oj/W qjM] - E i r PrjW = 0 (5) 

Assume time-dependent motion of the form, 

o,-<n>(t) = q-M e(-/3S!+>"\/i-02>' 

\r(t) = X re(-"»+ ; i !v' i- /32) t 

This form is selected so that fi is the undamped natural frequency and 
P is a true damping ratio; /8 and U are both real numbers. 

An eigenvalue equation for /?, 0 is obtained by substituting the 
foregoing forms for <?/"' and A^into (4) and (5). Then from (5) one 
may solve for (/)(n) in terms of Xr and substitute the result into (4). 
Requiring nontrivial solutions for the Xr gives the following deter
minantal equation: 

| Apv | = 0 p, q = 1,. . . , fl 

where the determinant elements are 

2 » 
E E 

n=iy=i 

•faW PyW tfjto UjW - OjPj) 

MjW (wjW2 - Qj*)2 
= 0 (9) 

where J = 1, 2 , . . . orders the total system frequencies by increasing 
magnitude along with their associated damping ratios. 

Equation (8) is the usual result for determining the undamped 
natural frequencies, flj. Equation (9) then allows a simple compu
tation of the corresponding damping ratios, fij. Solving (9) for the fiJ: 

one has 

PJ-
2 =° 

•-E E 
n = l ; ' - l 

•|8uWfa<">{j(")MjW/Oj| 

M / " > (o)/">2 - Q j 2 ) 2 

2 » 

E E 
n = l j = l 

/VW' 
(10) 

lM/"> (&)/"» - f i j 2 ) 2 

The entire right-hand side of (10) is known once the flj- have been 
determined from (8). Hence (10) is the promised explicit formula for 

fa. 
Bounds on @j: First consider the special case fy(n> <i>j(n) = con

stant, which is a reasonable approximation for some simple structural 
elements. (10) reduces to 

ft/ = £,-<»> (OjM/Qj (10a) 

In reference (1) it is shown that one may order the frequencies so that 
Wj^/Qj < 1 for each associated pair of a>/n) and Qj. Hence from 
(10a) ft/ < f/n). Thus, in this special case, the total system modal 
damping is less than the damping in the corresponding component 
mode. Moreover, upper and lower bounds on the ft/ are known im
mediately from the previously obtained bounds on flj; see reference 
[!]• 

N •» 
: E E 

n = l ; - l 

ft^W' 
M/"> |[fi2(2/32 - 1) - 2£,-<»> ajM SI ft+ o>j2M] + 2iQ V i - |82 f/n) <o/n> - fift)). 

(6) 

For the case where the damping coefficients are small for each 
mode, one may neglect terms of order /32 and fy(n) )3 compared to one. 
Then (6) becomes 

N •» 

AP9= E E 
n=l j ' = l 

fe(re) PV"> l(^(">2 -n2)-2in(rJ
(">co/">-a/3)l (7) 

M/")(coy(")2-fi2)2 

Further note that for small damping, the natural frequencies, £lj, J 
= 1 ,2 , . . . , are the same as for the undamped system. Using (7), the 
determinantal equation for determining the system natural 
frequencies, |A p g | = 0, becomes (to consistent order in /5 and 

| A j ! , | = 0 (7a) 

where Ap, is the real part of Apq, see equation (7). The imaginary part 
of | Apg | = 0 then is a polynomial in /? which determines the system 
model, dampings, fti, 182,... , once the natural frequencies, Q : 

^2. • • • have been determined from equation (7a). 
fix, 

T w o C o m p o n e n t s W i t h a S i n g l e Constra int 
For this special, but fundamental, case the determinantal equation 

consists of but a single element. It should be emphasized that any 
number of components and constraints can be treated sequentially 
by using two components and a single constraint as the basic building 
block. 

For a single element determinant, the complex determinantal 
equation, (6) or (7), may be written as two separate real equations of 
particularly simple forms. Using (7), one has 

/ V n ) f t i » 2 -
E E 

? I = I . I = I MjW (ujW* - Qjiy 

It is worth emphasizing that in the general case by using the explicit 
formula for ft/ for a known Qj, i.e., equations (10) or (106), one can 
always obtain bounds on ft/ without first determining Qj by nu
merically computing the right-hand side of (10) or (106) for all values 
of Q between any two coj and coy+i. This procedure can also be applied 
to the even more general case for any number of components and 
connections, c.f. (6), (7), and (7a). 

It is possible that an analytical formula for bounds can be obtained, 
but the obvious method for determining minima and maxima of ft; 
leads to a complicated numerical calculation. That is, if one uses (10) 
to determine the fi for which dfij/dQ. = 0 then the calculation of such 
Q is no simpler than determining the natural frequencies, Uj, from 
(8). Substitution of Qj into (10) gives the exact ft/, of course, and 
bounds become of little interest. On the whole the author is pessimistic 
about obtaining explicit analytical bounds for the ft/. 

A Numerical Example 
Consider two identical, simply supported beams which are crossed 

and pinned at their centers; see Fig. 1. For simplicity only doubly 
symmetric modes are considered. From symmetry, the doubly sym
metric modes correspond to the clamping of each beam at its 
center. 

The constraint condition for the problem is 

E <7;(1) 0;(1) (x = 0) - Z <?/2) 4>/2) (* = 0) = 0 (4a) 
J J 

where x = 0 denotes the coordinate of the beam center. Comparing 
(4a) to (4), it is seen that 

0 (8) 
/V x > = tfy(1) (* = 0), fti/2> = -4>/2) (* = 0) (11) 
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TOP VIEW 

-^y-

SIDE VIEW 

7$F ~J?r 

EFFECTIVE SUPPORT CONDITIONS FOR DOUBLY 
SYMMETRIC MODES 

TICK MARKS DENOTE n / u , FOR J=l,2,. 

• \ - — e , - i o £.ez = e 3 - . . . - e 
v\ -

Fig. 2 

Table 1 Beam clamped at center—symmetric modes 
o n l y ; Q j / c o i a 4 ( J + V4)

2 = (2J + %)* [6] 

J 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Qj/ui 

6.25 
20.25 
42.25 
72.25 

110.25 
156.25 
210.25 
272.25 
343.25 
420.25 

ft = ft = ft etc. 
BjIK 

0.7470 
0.8585 
0.9021 
0.9251 
0.9344 
0.9491 
0.9561 
0.9614 
0.9656 
0.9689 

ft = 10 ft ft = ft etc. 
/s^/r 

1.535 
0.9300 
0.9184 
0.9307 
0.9418 
0.9503 
0.9568 
0.9618 
0.9658 
0.9691 

EXAMPLE GEOMETRY 
Fig. 1 

Using (11) in (8) and (10) and recalling that for this example the two 
beams are identical, one has 

h 
<t>j2 (x = 0 ) 

[Mj (co;2 - 0/2) 

and 

'• (x = o) ft wj/aj 
i[ Mj(wj2-Qj2)2 

4>j2 (x = 0) 

(86) 

(106) 

< iMy (coy2 - ov2)2] 

Numerics have been carried out for two specific choices of com
ponent damping factors, ft. Case I corresponds to ft = ft a constant, 
for all j . Case II corresponds to ft = 10 f and ft = f for al l ; > 2. fij is 
computed from (86) then Bj is computed for (106). The results for 
ft//f are shown in Table 1 for J = 1 , . . . , 10. As may be seen ft//ft < 
1 for each pair, J = j = 1,2,3, etc. Note that as J -* <=, ftj/f-* 1. This 
is to be expected on physical grounds. 

In Fig. 2, the right-hand side of equation (106) is plotted versus Q. 
The maxima and minima give bounds on the Bj shown in Table 1. 
Determining these bounds, of course, does not require first deter
mining the fij. Note that the results for Cases I and II approach each 
other as fi/toi —• °° as one would expect. 
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On the Invar iance Group of the 
P lane Squeezing Flow of a 
Viscous Fluid 

N. Phan-Thien1 

A plane flow of a viscous incompressible fluid can be adequately 
described by the following stream-function equation: 

V2i//t + i/-yV2i^ - ^ V 2 ^ , = Wty, (1) 

where the stream-function <p is defined by u = dip/dy = \py, v = 
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BRIEF NOTES 

— d\p/dx = —\f/x, v is the kinematic viscosity of the liquid and V is the 
two-dimensional gradient operator. 

Cantwell [1] has reported a 10-parameter Lie group of space-time 
coordinates transformations that leaves (1) invariant. Infinitesimally, 
this 10-parameter Lie group is described by 

where 

* = x + e£ + 0(c2), 

| y = y + ep + 0(e2), 

| i = £ + er + 0(e2), 

^= f + 67? + 0(f2), 

'£ = ax + by + cty + f±(t) + d 

\ p = —bx + ay - ctx + hit) + e 

| T = 2at + h 

,7; = l /2cU 2 + y2) - f2(t)x + h(t)y + sit) + p. 

(2) 

(3) 

a, b, c, d, e, h, p are constants and hit), fo.it), and s(t) are arbitrary 
functions of t. In (3), the dot denotes derivative with respect to 
time. 

It is the purpose of this communication to show that the plane 
squeeze film flow of a viscous fluid admits a similarity solution if the 
velocity of approach of the plates is proportional to (2at + h)~1/2. 

To do that, we need to find a particular subgroup of (3) that leaves 
the boundary conditions of the plane squeezing flow invariant. Now 
the velocity field at the upper plate (y = H(t)) must satisfy 

u(x, y = H(t)) = ty (x, y = H(t)) = 0 

u(x, y = H{t)) = -iix ix, y = Hit)) = -Hit) 

Invariance of the boundary curve y = Hit) implies 

y = Hit) 

that is, 

pix,y = Hit))=Hit)rix,y = Hit)) 

which requires that 

-bx + aHit) - ctx + hit) + e = H(t)(2at + h). 

For this to be satisfied identically we need b = 0 = c and 

hit) = Hit)i2at + h)- aHit) - e. 

Next, invariance of (4) implies 

^ ix, y = Hit)) =0, 

which requires that 

D£ On D_ 

(4) 

(5) 

(6) 

By Dy*x Dy^ Dy™ ' 
(7) 

etty = Hit). D/Dxi is the total derivative (Bluman and Cole [2]) de
fined in the four-dimensional space ix, y, t, \p) by 

D d , d 
= 1- \pi — , xi = x, y, or t. 

Dxi dxi d\j/ 

Condition (7) requires t h a t / i = 0 or / i ( t ) = constant. 
Invariance of the second boundary condition (5) requires that 

h(x,y = Hit))=Hii) 

which implies 

D-n /J£ Dp DT 
n 7T?** n +y—Z-+t =H(t)r at y = Hit), 
Dx DX Dx Dx 

that is, 

hit) = -Hit)i2at + h)- aHit). (8) 

Compatibility between (8) and (5) dictates that the normal velocity 
of approach of the plates must satisfy 

H + - -H=0, 

that is, 

2at + h 

Hit) = qiiat + h)~1/2, Hit) = - (%at + h)^2 
0) 

that is, if Hit) is given by (9), then the plane squeezing flow admits 
similarity solutions described by the following 6-parameter Lie group 
of transformations 

(10) 
\ P = ay 

IT = 2at + h 

,n = «W +p 

For example, the case where (I = p = 0 = sit) admits the following 
similarity solution: 

dx dy dt d\p 

that is, 

where 

* i 

ax ay 2at + h 0 

and £2
 : 

V2at + h y/2at + h 

(11) 

(12) 

(13) 

are two invariants of (11). 
Substitution of (12) into (1) results in a reduction in the order of 

the p.d.e. Alternatively, the velocities can be scaled appropriately 
according to (12) and their substitution into the Navier-Stokes 
equations results in an ordinary differential equation. This equation 
has been studied extensively by Wang [3] who found that when H is 
proportional to V l _ ott a similarity solution for the plane (and cir
cular) squeezing flow is possible. The flow is then described by a single 
parameter S = aR2/v, where R is a length scale. Among many other 
things reported in this paper, Wang has shown numerically that the 
squeezing force may not necessarily follow the direction of approach 
for certain values of S. 
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— d\p/dx = —\f/x, v is the kinematic viscosity of the liquid and V is the 
two-dimensional gradient operator. 
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hit) = Hit)i2at + h)- aHit) - e. 
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similarity solutions described by the following 6-parameter Lie group 
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IT = 2at + h 

,n = «W +p 

For example, the case where (I = p = 0 = sit) admits the following 
similarity solution: 

dx dy dt d\p 

that is, 

where 

* i 

ax ay 2at + h 0 

and £2
 : 

V2at + h y/2at + h 

(11) 

(12) 

(13) 

are two invariants of (11). 
Substitution of (12) into (1) results in a reduction in the order of 

the p.d.e. Alternatively, the velocities can be scaled appropriately 
according to (12) and their substitution into the Navier-Stokes 
equations results in an ordinary differential equation. This equation 
has been studied extensively by Wang [3] who found that when H is 
proportional to V l _ ott a similarity solution for the plane (and cir
cular) squeezing flow is possible. The flow is then described by a single 
parameter S = aR2/v, where R is a length scale. Among many other 
things reported in this paper, Wang has shown numerically that the 
squeezing force may not necessarily follow the direction of approach 
for certain values of S. 
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Torsional Vibrations of 
Poroelastic Cylinders 
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I n t r o d u c t i o n 
The study of torsional vibrations is of importance, both from the

oretical and practical considerations. Such vibrations, for example, 
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are used in delay lines. Further, based on the reflections and refrac
tions during the propagation of a pulse, imperfections can be identi
fied. Still another use of torsional vibrations is the measurement of 
the shear modulus of a crystal. 

In this Note, torsional vibrations of an infinite, isotropic, homo
geneous poroelastic cylinder are studied. Plots of nondimensional 
phase velocity, group velocity, and wavelength as a function of non-
dimensional frequency are presented. 

Solution of the Problem 
Let r, 6, z be cylindrical polar coordinates with z-axis along the axis 

of the cylinder. The nonzero displacement component of solid Uo and 
liquid Uo are to be determined from 

24 

iV(V2 - r-2)ue = — (pnu, + puUg) + b — (u„-
i>ti dt 

Uo) 

0-
dt2 (Pl2«0 + P22U0) 

d 

dt 
Uo). (1) 

Here p\\, P12, and P22 are mass densities as introduced in [1], N is a 
shear modulus, fe is a dissipation coefficient, and V2 is the Laplacian 
operator. From the conditions of stress-free curved surface, the fre
quency equation of torsional vibrations of a circular poroelastic cyl
inder of radius a is 

J2(R) = 0, (2) 

where J2 is the Bessel function of first kind and of order two. 
The propagation mode shapes are given by 

CiJi(knr) exp [i(az + pt)] when kn ^ 0 

Pir exp [i(az + pt)] when kn = 0, 

where a is the wave number, p is the frequency, and J i is the Bessel 
function of first kind and of order one. In these equations, Rn is the 
nth nonzero root of equation (2) and 
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where 
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The roots of equation (2) are well known. 
On combining and rearranging equations (4), we can write 

N(Rn
2 + a2a2) 

where 

: Er - iEu . 

y2T22(.au(T22 - 0122) + &1 

Ei 

y2o22
2 + bi2 

yb i (g i2 + (T22)2 

y2<T222 + bl2 
(5) 

b\, y, Oij are nondimensional dissipation coefficient, frequency, and 
mass densities, respectively, defined by 

, ab ap pij N 
bi = , yi = —, <ry = —, p = Pn + 2p2 + P22, c0

z = — . 
pco co 

Because of the dissipative nature of the medium, in general, the wave 
number a is complex [1]. Letting 

a = ar + icti, 

then phase velocity cp (= pi \ ar \) is given by 

cp/co = 2^2y{B1 + B 2 ) - 1 / 2 (6) 

The group velocity is 

cg/c0=2^2B3-HB1+B2)
1'2. (7) 

The attenuation xa (= 1/|«,-1) is 

xa/a = 2l'2(Bl-B2)-
m, (8) 

where 

Bi = \yHEr2 + E^) - 2y2ErRn
2 + >VI1 / 2 , B2 - y2Er - Rn

2, 

S3 = y 2G x( l + y^ErBr1 ~ Rn
2Brl) + 2yEr(l - Rn

2Brl) 

+ y3B1-HyEiG2+2Er
2+2Ei

2), 

G^_ 2biHEr-D Ci_(bl
2-y2a222)Ei 

y(y20222 + bi2)' y(y2<*222 + 612) 

It is observed that the square of the wave number is the average of S j 
and B2. 

D i s c u s s i o n s 
In the general case, even the least mode is observed to be dispersive 

where as it is nondispersive in the absence of dissipation. Conse
quently, the least mode can be used in delay lines [2]. In higher modes 
vibrations are dispersive. Phase velocity, group velocity, wavelength 
are calculated for different values of frequency for a cylindrical bone 
whose parameters are given in [3] and are presented graphically. From 
Fig. 1, it is observed that when dissipative coefficient increases from 
0.01 to 0.10, the phase velocity curves of first and second modes in
tersect around the wavelength (= y) is equal to 0.4. For wavelength 
greater than 0.4 phase velocity is decreasing in both the modes and 
when dissipative force is equal to 1, the wave velocity is higher than 
in all other cases. The group velocity and wavelength are given in Figs. 
2 and 3. When the values of dissipative force are small, the graphs for 
wavelength are straight lines and their slope increases with increasing 
hi. 

In absence of dissipative force vibrations are not attenuated and 
the same conclusions as that of classical theory are valid. 
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A Condition of Bending-Free 
Torsion to Define the Center of 
Twist 

N. G. Stephen1 

In troduc t ion 
A beam subjected to terminal tractions and displacement restraints 

will in general experience direct and shearing stresses dependent on 
the magnitude and distribution of the stresses over the end surface 
rather than the types of forces and couples producing these terminal 
stresses. However, it is convenient for the engineer to be able to 
identify the stress resultants in terms of the applied loads. Thus a 
cantilevered beam subjected to a terminal shearing force [1] will ex
perience direct and shearing stresses and it is convenient to differ
entiate between direct stresses due to bending and warping restraints, 
and shearing stresses due to shear and torsion. Toward this end the 
center of flexure is defined as that point through which the terminal 

shearing force must pass in order to produce "torsion-free bending," 
a state usually defined [2] by zero overall local rotation of the section 
which is mathematically equivalent to zero rotation of the centroid 
of the section, vanishing of shearing stresses due to torsion and hence 
zero torsional stress resultant. 

The center of twist is usually defined [3] according to a minimum 
potential energy of warping, which can easily be shown to correspond 
mathematically to rotation about an axis such that the warping in
tegral will be a minimum. The relationship between the two centers 
as defined previously is shown in [4]. The exact solution for torsion 
with restrained warping is not known, but since restraint gives rise 
to axial direct stresses it seems natural to investigate the condition 
under which these stresses do not constitute a resultant bending 
rnoment, equivalent to "bending-free torsion," and it is shown that 
this leads to coordinates of the center of twist agreeing with those 
obtained on the basis of minimum warping energy. 

Theory 
If x and y are the principal axes and z coincides with the axis of 

centroids then for a uniform isotropic rod the most general form of 
the displacements during twist are [3] 
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2 and 3. When the values of dissipative force are small, the graphs for 
wavelength are straight lines and their slope increases with increasing 
hi. 

In absence of dissipative force vibrations are not attenuated and 
the same conclusions as that of classical theory are valid. 

R e f e r e n c e s 
1 Biot, M. A., "Theory of Propagation of Elastic Waves in Fluid-Saturated 

Porous Solid," Journal of the Acoustical Society of America, Vol. 28,1956, pp. 
168-178. 

2 Redwood, M., Mechanical Wave Guides, Pergamon Press, New York, 
1960, pp. 146-148. 

3 Nowinski, J. L., and Davis, C. F., "Propagation of Longitudinal Waves 
in a Circularly Cylindrical Bone Element," ASME JOURNAL OF A P P L I E D 
M E C H A N I C S , Vol. 38,1971, pp. 578-584. 

A Condition of Bending-Free 
Torsion to Define the Center of 
Twist 

N. G. Stephen1 

In troduc t ion 
A beam subjected to terminal tractions and displacement restraints 

will in general experience direct and shearing stresses dependent on 
the magnitude and distribution of the stresses over the end surface 
rather than the types of forces and couples producing these terminal 
stresses. However, it is convenient for the engineer to be able to 
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and shearing stresses due to shear and torsion. Toward this end the 
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shearing force must pass in order to produce "torsion-free bending," 
a state usually defined [2] by zero overall local rotation of the section 
which is mathematically equivalent to zero rotation of the centroid 
of the section, vanishing of shearing stresses due to torsion and hence 
zero torsional stress resultant. 

The center of twist is usually defined [3] according to a minimum 
potential energy of warping, which can easily be shown to correspond 
mathematically to rotation about an axis such that the warping in
tegral will be a minimum. The relationship between the two centers 
as defined previously is shown in [4]. The exact solution for torsion 
with restrained warping is not known, but since restraint gives rise 
to axial direct stresses it seems natural to investigate the condition 
under which these stresses do not constitute a resultant bending 
rnoment, equivalent to "bending-free torsion," and it is shown that 
this leads to coordinates of the center of twist agreeing with those 
obtained on the basis of minimum warping energy. 

Theory 
If x and y are the principal axes and z coincides with the axis of 

centroids then for a uniform isotropic rod the most general form of 
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where dd/dz is the twist rate assumed constant for unrestrained 
warping, <p(x,y) is the Saint-Venant warping function and the last 
three terms in each expression are rigid-body translations and rota
tions. 

Considering the rod to be composed of a collection of initially 
straight longitudinal filaments, real within the section and imaginary 
without, the axis of twist is now defined as that filament which does 
not distort into a helix during twist but remains straight when the rod 
is in a state of bending-free torsion. The center of twist (XT, yr) is then 
the position of this axis in any cross section and is given by 

(to 6» , 
— - — - 0 (2) 
oz oz 

If the twist rate is assumed constant, from equations (1) we find 

xr = P, VT = q (3) 

The state of bending-free torsion is obtained from the usual stress-
strain relationship 

Eez v(ax + oy) (4) 

Multiplication of (4) by x and y in turn and integration over the cross 
section yields 

E— ( ( xw dxdy = | | xoz dxdy — v | | x(ax + ay)dxdy 

(5a> 

E a - J J yw dxdy = J J yffz dxdy ~ " J J y('<Tx + °y^dxdy 

(56) 

From Love [5] it is known that for a uniform isotropic beam 
subjected to terminal loadings only, the stress distributions of 
Saint-Venant flexure and torsion where stress components are either 
independent or linear functions of the axial coordinate z requires that 
o~x = iy = 0, and requiring the bending moments 

My = | j xaz dxdy 

Mx = j j y<rzdxdy 

to be zero the condition of bending-free torsion becomes 

_d_ 

oz 
• I i xw dxdy = 0 

JJA 

(6a) 

(66) 

(7a) 

— I | yw dxdy = 0 
dz JJA 

(76) 

For nonuniform torsion the twist rate is not constant and equations 
(7) with (1) and (3) yield the center of twist coordinates in the familiar 
form 

XT = ~ — J J y<t>(x,y)dxdy 

yr = — JJ x<t>(x,y)dxdy 

(8a) 

(86) 

This coincides with the center of twist as in [3] and as used by Tsai 

C o n c l u d i n g R e m a r k s 
The approximate nature of the center of twist within the mathe

matical theory of elasticity is clearly illustrated by the inconsistency 
contained in the above theory, which is also intrinsic to the alternative 
approach based upon minimum potential energy of warping [3]. We 
see that the theory up to and including equations (7) assumes Saint-
Venant torsion displacements which require a constant twist rate; 
however the results in (8) depend on a nonzero value of the derivative 
of the twist rate, i.e., 

d28 

a^°-
This dilemma arises from the lack of an exact theory for torsion with 

restrained warping, when an appropriate theory is constructed by 
assuming Saint-Venant displacements except with a variable twist 
rate. 
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ERRATUM 
Erratum on "On Laminar Dispersion for Flow Through Round 

Tubes," by J. S. Yu, and published in the December, 1979, issue of the 
ASME J O U R N A L OF A P P L I E D M E C H A N I C S , Vol. 46, No. 4, pp. 

750-756. 
Because of a misinterpretation of the results obtained by the 

method of Fast Fourier Transform, the presently calculated con
centration profiles shown in Figs. 1-3 are in error. Concentrations at 
the positive and negative values of 2f/r having the same magnitude 
should be interchanged or the correct results can be obtained by rig
idly rotating the entire profiles 180 deg about the axis at 2f/r = 0 in 
the existing coordinate plane. The location of the peak of the con
centration profiles appears therefore downstream of the mean flow 
position and approaches 2f/r = 0 asymptotically at large times. The 
author apologizes for inadvertently making such a serious mistake 
in reporting the numerical results. 
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The Dynamics of Explosion and Its Use. By Josef Henrych. Else
vier, New York. 1979. Pages 558. Price $107.25. 

REVIEWED BY G. R. ABRAHAMSON1 

This book is an extensive work covering an unusually broad range 
of topics: 

1 Characteristics of explosions (chemical and nuclear). 
2 Loads generated by explosions in extended media (air, water, 

rock, soil) and on structures. 
3 Cratering, quarrying, and subsurface rubblization. 
4 Response of structures to surface loads. 
5 Response of structures to seismic loads. 

The book is mainly a review: a total of 246 references are cited. The 
references are in two lists; the main list (140 references) contains about 
70 percent Russian and Czechoslovakian articles, the supplementary 
list (106 references) contains mostly Western articles. Overall, the 
treatment tends to be mathematical, as indicated by the 13 pages of 
symbols used; however, for the first three topics there is considerable 
qualitative description, and when coming to applications empirical 
relations are often given. 

The material on characteristics of explosions concerns mainly 
chemical explosions. The treatment of detonation phenomena and 
the initial shock pressure transmitted to adjacent materials is con
ventional and straightforward. As an example of an application, the 
impulse produced at a point by a contact charge is calculated from 
the initial shock pressure and the time required for a rarefaction wave 
to reach the point. This is later used in an oversimplified analysis to 
calculate the explosive needed to perforate a plate by multiple spalls 
from the back surface. In another application, the theory of lined-
cavity charges (called cumulative charges) is reviewed. 

The basic processes involved in nuclear explosions are described 
in eight pages, starting from the fundamentals of quantum mechanics 
and ending with a qualitative description of the development of the 
blast wave. 

Spherical shock waves in air are described using Brodes' theory and 
empirical relations obtained by the author of the book. Shock re
flections and loads on structures projecting above the ground are 
discussed. Inflow and propagation of shock waves in straight and 
jointed tunnels is treated. 

Shock wave propagation in soils and rock is discussed extensively, 
for both buried charges and above-ground charges. The main appli
cations considered are cratering and quarrying, and to a lesser extent 
demolition of structures. 

The last third of the book concerns the response of structures to 
idealized surface loads and seismic loads. For surface loads, elastic 
and elastoplastic structures of single and multiple degrees of freedom 
are considered (frames, beams, plates, arches). Surface loads include 
the ideal impulse with various distributions and finite duration loads 
of various idealized distributions and time variations. Some results 
are given in terms of dynamic load factor, others include formulas for 

critical moments, deflections, etc. This part of the book is the most 
extensive compilation of theoretical results on the response of 
structures to pulse-type surface loads that this reviewer has seen. No 
experimental results are given. Seismic loads are in the form of os
cillatory imputs to foundations of structures of single and multiple 
degrees of freedom. 

The shortcomings of the book are few, but significant. The intro
duction appears somewhat overoptimistic concerning the use of ex
plosives, particularly nuclear explosives. It also contains some con
fusing statements; for example, an excessive energy transient in a 
nuclear reactor is confused with a nuclear explosion. In the discussion 
of detonation and stress waves, some derivations are made from a 
mathematical viewpoint when a physical viewpoint might be more 
useful for practicing civil engineers. The translation suffers from some 
unconventional word usage and awkward sentences that would make 
the book difficult for beginners to follow. Occasional oversimplified 
explanations and assumptions appear. For example, the section on 
stress waves ends with a short commentary on failure caused by stress 
waves that is greatly oversimplified. 

In spite of the shortcomings, the overall impact of the book is that 
it is an extensive and useful compilation of information on theory and 
applications of explosives. The type setting and printing are nearly 
perfect. 

Numerical Solution of Differential Equations. By Isaac Fried. 
Academic Press, New York. 1979. Pages xii-261. Price $23.50. 

REVIEWED BY T. BELYTSCHKO2 

This book provides an introduction to the numerical solution of 
partial differential equations by both finite-difference and finite-
element methods. Included are chapters on finite differences, varia
tional formulations, finite elements, discretization accuracy, eigen-
problems, two point boundary-value problems, and the equations of 
heat transfer, motion, and wave propagation. 

The emphasis is on the fundamental concepts of numerical pro
cedures, which are carefully illustrated through examples. Although 
the book introduces many mathematical concepts such as L=. error 
estimates, it is written in a lucid style that should be clear to a non-
mathematician; the only exception is the assumption of the reader's 
familiarity with linear algebra, but this assumption is only invoked 
sparingly. Because of the wide range of topics covered, the examples 
are confined to one dimension, which again conforms with the author's 
intent that this be a "concept" book rather than an applications 
text. 

I would recommend this book both to graduate students and re
searchers who would like an introduction to numerical methods or 
to improve their understanding of its mathematical aspects. I found 
reading the book to be enjoyable and profitable. 

1 Director, Poulter Laboratory, Stanford Research Institute International, 
Menlo Park, Calif 94025. 

2 Professor, Department of Civil Engineering, Northwestern University, 
Evanston, 111. 60201. 
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Vibrations in Technology. (Vibratsii v Tekhnike). Handbook in 
six volumes. Volume I. Vibrations in Linear Systems (Kolebaniya 
Lineinykh Sistem) Moskva, "Mashinostroenie." 1978. (In Rus
sian.) Academician V. V. Bolotin, Editor. Pages 352. 

REVIEWED BY R. M. EVAN-IWANOWSKI3 

The objective of this handbook is to present in depth an exhaustive 
and comprehensive treatment of major parts of physics, mechanics, 
and technology related to vibrations. This objective is excellently met: 
the book is well organized, well written, supplemented by numerous 
tables and graphs. 

It is prepared for a wide range of readers, with main emphasis on 
practicing engineers working in the areas of creating new techniques 
and a new technology. Volume I deals with linear systems, and con
tains the following chapters: 

PART I 
Vibrations of Linear Systems With Finite Degrees of Freedom 

Chapter I Basic Notions 
Chapter II Mathematical Descriptions of Vibratory Systems 

With Finite Degrees of Freedom 
Chapter III Free Vibrations in Conservative Systems 
Chapter IV The Methods of Calculation of the Natural 

Frequencies and the Normal Modes for the 
Systems With Multiple Degrees of Freedom 

Chapter V Nonconservative Autonomous Systems With 
Lumped Parameters, Stability of Linear 
Systems 

Chapter VI Forced Vibrations 
Chapter VII Parametric Vibrations 

PART II 
Vibrations of Linear Continuous Systems 

Chapter VIII Mathematical Description of Continuous Systems 
Chapter IX General Properties of Natural Frequencies and 

Normal Modes 
Chapter X Determination of the Natural Frequencies and 

Normal Modes of Elastic Systems 
Chapter XI Natural Frequencies and Normal Modes of 

Elastic Beams and Beamlike Structures 
Chapter XII The Natural Frequencies and the Normal Modes 

of Elastic Plates 
Chapter XIII The Natural Frequencies and the Normal Modes 

of Elastic Shells 
Chapter XIV Forced Vibrations of Elastic Systems 
Chapter XV Dynamic Stability of Continuous Systems 

Chapter XVI Wave Propagation and Impact Processes in 
Elastic Systems 

PART III 
Random Vibrations of Linear Systems 

Chapter XVII Information on the Theory of Random Processes 
and Fields 

Chapter XVIII Random Vibrations of a System With Finite 
Degrees of Freedom 

3 Professor, Department of Mechanical and Aerospace Engineering, Syracuse 
University, Syracuse, N.Y. 13210. 

Journal of Applied Mechanics 

Chapter XIX Parametric Vibrations in Random Excitations 
Chapter XX Random Vibrations in Continuous Systems 

Chapter XXI Foundations of the Theory of Vibratory 
Reliability 

The contents of the chapters are self-explanatory from their titles. 
Chapter XIX "Parametric Vibrations in Random Excitations" and 
Chapter XXI "Foundations of the Theory of Vibration Reliability," 
contain recent contributions developed in the U.S.S.R., in particular, 
by the Editor, Academician V. V. Bolotin. 

The handbook is highly recommended as an indispensible adden
dum to the references on vibrations, even for the persons with a ru-
dementary knowledge of Russian, since the material is presented in 
a nondimensional form, and the specific system configurations are 
shown in clear diagrams. 

Elastic Analysis of Soil-Foundation Interaction. By A. P. S. Sel-
vadurai. Elsevier Scientific Publishing Co., Amsterdam, N.Y. 
1979. Pages xii-546. Price $107.50. 

REVIEWED BY G. M. L. GLADWELL4 

This is the kind of book that one can use to hand to a graduate 
student starting to work on the subject of beams and plates on elastic 
foundations. It has a wealth of information, well organized, and not 
having too much detail. In addition, and most importantly, it has an 
extensive list of references, about 800 in all, covering the literature 
both in the Soviet Union and in the West. 

The book is written for engineers, not mathematicians, so that the 
emphasis is on methods of analysis which lead to numerical, and 
particularly graphical, results for quantities of engineering inter
est—contact stresses, deflections, etc. Little emphasis is placed on 
topics such as integral transforms, dual integral equations, etc. Where 
such topics are introduced they are treated merely as tools which may 
be used to obtain solutions to problems. 

The main body of the book is devoted to a study of the wide variety 
of problems relating to an elastic structure lying on a foundation, 
which again is almost always assumed to be elastic. The variety of 
problems arises because the structure may be taken to be rigid or 
elastic, and may be a beam, thin or thick, finite or infinite; a plate, 
circular or rectangular, thin or thick, finite or infinite. The foundation 
also may take various forms; it may be a simple Winkler foundation 
made up of independent linear springs, it may be some more com
plicated, Vlasov-Leont'ev or two-parameter model, or it may be a 
continuum, isotropic or anisotropic, homogeneous or nonhomo-
geneous. Virtually all the important combinations are studied and 
compared with each other. Most of the work is quasi-analytical, but 
purely numerical methods such as the finite-difference and finite-
element methods are introduced and used. 

A final chapter deals with the determination of soil parameters, 
particularly by experimental methods, and a series of appendices give 
the details of the mathematical analysis of some of the basic plate-
foundation problems. 

This book performs the valuable task of bringing the reader up to 
date, organizing the research which has been done, and pointing out 
some areas which still remain to be studied. I value its addition to my 
library. 

4 Professor, Department of Civil Engineering, University of Waterloo, Wa
terloo, Ontario, Canada N2L 3G1. 
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Numerical Simulation of Fluid Motion. Edited by J. Noye. North 
Holland. 1978. Pages ix-580. Price $66.75. 

REVIEWED BY M. HOLT6 

In this volume, the papers presented at an International Conference 
on Numerical Methods applied to Problems in Fluid Dynamics, held 
at Monash University, Melbourne, Australia, in 1976, are published. 
The volume reveals clearly that Australia is rapidly becoming a 
leading center in Computational Methods and ranks well among the 
longer established centers in U.S., U.S.S.R., and Western Europe. The 
major contributions in the volume are from Australia itself, but there 
are also two papers from New Zealand, one from New Guinea, and one 
from the U.S. 

The volume begins with a long and thorough account, by B. J. Noye, 
of finite-difference methods as applied to the Linear Heat Conduction 
Equation in one or more dimensions. This updates the existing 
monographs on this topic, such as the classical book by Richtmyer and 
Morton, and could serve as the basis for a graduate text. The second 
work, by Clive Fletcher, consists of an exhaustive but very readable 
description of Galerkin methods. This is certainly more complete than 
other works on this topic known to the reviewer and covers Fletcher's 
own contributions to Galerkin techniques as well as recent work on 
combining Galerkin methods with finite-element and spectral 
methods. Two shorter survey articles follow, the first, by G. P. Steven, 
deals with the applications of finite-element methods to fluid flow 
problems and the second, by Fix, discusses hybrid finite-element 
methods. The remaining survey papers concern Marker and Cell 
techniques (Browne), a critical comparison of numerical techniques 
for solving fluid flow problems (Pearson), and a relativistic approach 
to numerical solutions of dynamic systems problems (Barnett). 

The second part of the volume, dealing with applications, begins 
with a long paper on the simulation of tides and currents in gulfs by 
Noye and Tronson, followed by three other papers on oceanographical 
problems. Morrison and Smith apply network techniques to open 
channel flows in estuaries, while a further paper by Noye concerns 
the effect of wind on circulation in lakes and other large bodies of 
water. Interspersed with three other papers on hydraulic problems 
are two papers on cavity flows by Gupta and Patterson, respectively, 
a paper on Supersonic Cone Flow by Fletcher, one introducing ther
mal and buoyancy effects into fluid flow problems (Stevens), the 
application of Galerkin techniques to sound propagation in nonuni
form ducts (Eversman) and a discussion of sea breezes by Pearson and 
Williams. The volume ends with a paper by Wallington on the nu
merical analysis of geophysical field data. 

The editor and organizers of the conference are to be commended 
on assembling this collection of important new contributions in Nu
merical Fluid Dynamics. 

Elastic-Plastic Fracture. Edited by J. D. Landes, J. A. Begley, and 
G. A. Clarke. ASTM Special Technical Publication 668. Ameri
can Society for Testing and Materials. 1979. Pages 1-771. Price 
$58.75. 

REVIEWED BY A. S. KOBAYASHI8 

A symposium on Elastic-Plastic Fracture sponsored by ASTM 
Committee E-24 Committee was held in Atlanta, Ga., in November, 
1977, to provide a forum for discussing the state of science in elas
tic-plastic fracture. The 33 papers contained in this symposium 
proceedings are grouped into the following three parts: Elastic-Plastic 

6 Professor, Department of Mechanical Engineering, University of California, 
Berkeley, Calif. 

6 Professor, Department of Mechanical Engineering, University of Wash
ington, Seattle, Wash. 98195. 

Fracture Criteria and Analysis; Experimental Test Techniques and 
Fracture Toughness Data; and Application of Elastic-Plastic Meth
odology. Of particular interest to JAM readers are the first and third 
parts of this book which will be briefly reviewed in the following. 

The analysis papers in the first part dealt with new as well as as
sessment of existing criteria for stable crack growth and ductile in
stability. The first paper by Paris, et al., presented a forceful justifi
cation for a new nondimensional material parameter, the "tearing 
modulus" as a material's resistance to tearing stability. The next paper 
by Hutchison, et al , provided the theoretical basis for use of J-integral 
for crack growth analysis in the previous paper. Shih, et al., and 
Kanninen, et al., followed with experimental and numerical justifi
cations for the use of crack opening angle in addition to the tearing 
modulus as a resistance to crack growth. Two-dimensional elastic-
plastic finite-element analysis was used by Sorensen, McMeeking, 
et al., Nakagaki, et al., Miller, et al., and D'Escatha, et al., to determine 
J-integral changes with stable crack growth and/or in the presence 
of finite strains, the crack surface energy release rate, G , for stable 
crack growth and a ductile damage function based on void nucleation, 
growth, and coalescence. 

The application papers were directed toward elastic-plastic fracture 
of pressure vessels, pipelines, and fracture specimens. Chell used an 
equivalent J-integral analysis to interpret the failure assessment curve 
by Harrison while Harrison, et al., discussed the application of COD 
approach for material selection, defect assessment, and failure in
vestigation of actual structures. Elastic-plastic fracture mechanics 
was used by McHenry, et al., to study the maximum surface flaw size 
in pipeline girthwelds and Simpson, et al., used COD and elastic-
plastic R -curves to describe ductile fracture of Zr-2.5Nb pressure tube 
alloy. Mcdonald, on the other hand, used plastic stress singularity 
strength to correlate fracture data of A36 and HSLA structure steel 
connections and Merkle used an empirical equation to analyze nozzle 
corner cracks. Notch root plasticity was used by Hammonda, et al., 
to study fatigue crack growth, and Brose, et al., and Mowbray corre
lated fatigue crack growth of 304 stainless steel and chromium-mo-
lylodenum-vanadium steel, respectively, with cyclic J . 

The excellent summary by Landes and Clarke could have been 
reproduced here in place of this review if it would have not been for 
its length. As Landes so rightly stated in the Introduction, . . . "The 
variety of topics covered should be of interest to a large number of 
researchers working in the elastic-plastic area. This publication 
represents the first major collection of papers devoted solely to the 
topic of elastic-plastic fracture." 

Turbulent Shear Flows I. Edited by F. Durst, B. E. Launder, F. W. 
Schmidt, and J. H. Whitelaw. 1979. Springer-Verlag, New 
York/Heidelberg, Berlin. Pages 415. Price $29.80 

REVIEWED BY P. A. LIBBY7 

This book contains the contributions to the First International 
Symposium on Turbulent Shear Flows held in 1977 at the Pennsyl
vania State University. This July, the Second Symposium was held 
in London; thus this series appears to be well founded and due for a 
long life. The successful initiation of a new series of international scale 
meetings and the proceedings resulting therefrom on turbulent shear 
flows indicates the interest this specialized topic attracts among en
gineering scientists throughout the world. 

The proceedings include 26 papers within the framework of five 
chapters with the following titles: Free Flows, Wall Flows, Recircu
lating Flows, Developments in Reynolds Stress Closures, and New 
Directions in Modeling. Of considerable novelty and value are in
troductions to each chapter written by an expert and placing the in-

1 Professor of Fluid Mechanics, Department of AMES, University of Cali
fornia, La Jolla, Calif. 92093. 
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dividual contributions in perspective relative to the broader topic. 
The editors of subsequent volumes in this series and in fact of similar 
proceedings would be well advised to follow this practice; the literature 
of turbulent flows involves a variety and scope which makes it difficult 
for an "outsider" to make proper assessments of new contributions, 
of problems calling for attention, etc. Thus the introductory remarks 
add significantly to the value of this volume. 

The contributions in the first three chapters are equally divided 
between experiment and theory while the subject of the last two 
chapters restricts their contents to developments in theory and 
numberical methods. It is the nature of current turbulence research 
that few papers deal with both experiment and theory. 

Workers in turbulence research and engineers responsible for ap
plications involving turbulent flows will find this volume a valuable 
addition to their reference library and will anticipate subsequent 
volumes in the series. 

Advances in Analysis of Geotechnical Instabilities. Edited by J. 
C. Thompson. University of Waterloo Press. 1978. Pages 230. 
Price $15. 

REVIEWED BY J. W. RUDNICKI8 

This volume collects five invited papers which were contributed 
during September, 1976, to October, 1977, for a symposium on geo
technical instabilities. A sixth article which is included, "The Appli
cation of Mechanics to Rock Engineering," by C. Fairhurst, is re
printed from the Proceedings of the Third Symposium on Engi
neering Applications of Solid Mechanics. 

This latter article provides a good overview of the subject of this 
volume and would be an appropriate introduction although it ap
peared fifth in the actual arrangement of papers. Fairhurst suggests 
that progress in geomechanics design has been hampered by the dif
ficulties presented by natural materials, but he emphasizes the use
fulness of theoretical analysis as a basis for good design even when 
material properties are not precisely known. Improvements in pre
diction of tensile failure of rock which have been made using the 
Griffith approach to fracture are discussed as an example. Fracture 
mechanics has, however, developed far beyond the analysis of Griffith 
and these developments, although not discussed, could perhaps lead 
to comparable improvements. This example illustrates one disap
pointing aspect of the volume: With the exception of a paper by I. 
Vardoulakis ("Equilibrium Bifurcation of Granular Earth Bodies"), 
which applies a bifurcation analysis to study the development of shear 
bands in sand, the articles describe modifications of standard ap
proaches to problems in geomechanics. However, in view of the mo
tivation for the symposium, which Thompson states in the editor's 
preface is the inadequate understanding of the mechanics of insta
bility in geotechnical materials, I had hoped for the description of 
more novel approaches. In spite of my disappointment over this one 
feature, I did find the problems and variety of approaches which were 
discussed to be very interesting. This' volume will be of interest to 
workers in geotechnical engineering as well as to those in other areas 
of mechanics who wish an introduction to this field. 

"Instability" is a term which can have many interpretations, even 
within the confines of mechanics, and the following short synopsis 
of articles in this volume indicates a variety of approaches: 

The first article by G. Gudehus discusses the application of an 
approach often taken in classical soil mechanics design: the defor
mation at failure is assumed to occur along discrete sufaces and in
stability is identified with the limiting state of static equilibrium. H. 
Lippman also uses this interpretation of instability in his article on 

8 Professor, Department of Theoretical and Applied Mechanics, University 
of Illinois at Urbana-Champaign, Urbana, 111. 61801. 

"translatory rock bursting" but, after reducing the problem to one 
dimension, he employs an elastic-plastic analysis to identify the 
limiting state of equilibrium. I. Vardoulakis considers instability as 
the development of zones of localized shear deformation. An article 
by R. H. Fakunding and others describes the geology of the Claren
don-Linden fault system in western New York and surface features 
(e.g., faults, joints, "popups") which appear to reflect some process 
of mechanical instability. Although this article contains much ter
minology from structural geology which may be unfamiliar to many 
readers, it does make clear the difficulties which are faced in inter
preting field data and infering mechanical processes from observations 
of the end state. The final article entitled "Discontinuity Models of 
Problems in Geomechanics," by A. M. Starfield summarizes and 
critically reviews computer methods for predicting the response of 
jointed rock masses. 

The article by Vardoulakis illustrates the improvements which can 
result from more detailed analysis. The point-of-view that localization 
of deformation can be explained as a bifurcation from homogeneous 
deformation, has recently proven to be very fruitful in studying this 
phenomenon in a variety of materials (see, for example, the review 
by J. R., Rice, "The Localization of Plastic Deformation," Proceedings 
of the 14th International Congress of Theoretical and Applied Me
chanics, Edited by W. T. Koiter, Delft, North Holland, Vol. 1,1976, 
p. 207). Vardoulakis finds that this approach yields predictions for 
the orientation of shear bands which are in much better agreement 
with his experimental observations than are the standard Coulomb 
or Roscoe predictions. 

Fracture of Composite Materials. Edited by G. C. Sih and V. P. 
Tamuzs. Sijthoff and Noordhoff, Alphen aan den Rijn—The 
Netherlands. 1979, Pages xvi-413. Price $35. 

REVIEWED BY C. W. SMITH9 

This volume constitutes the Proceedings of the First U.S.A.-
U.S.S.R. Symposium on Fracture of Composite Materials which was 
held at the Hotel Jurmala, Riga, U.S.S.R., September 4-7,1978. The 
purpose of the meeting was to assemble a small group of researchers 
"to review fundamentals, discuss problem areas and display the 
current developments" pertaining to the fracture characteristics of 
polyphase materials. 

The volume includes a total of 33 technical papers, 16 of which 
described studies conducted within the U.S.S.R., and 17 papers dealt 
with research conducted in the U.S.A. and in Europe. The volume is 
divided into five sections which may be briefly summarized as fol
lows: 

Section I (Microfracture) contains papers on micro and macro-
cracks (Mileiko), dispersed fracture (Tamuzs) microcrack enlarge
ment criteria (Kuksenko, Frolov, and Orlov), and fracture kinetics 
(Regel, Leksovskii, and Pozdnyakov) which involved both analytical 
and experimental approaches. 

Section II {Statistical and Analytical Methods) deals with sto
chastic models of fracture (Bolotin), computer simulation of fracture 
processes (Kopyov, Ovchinsky, and Bilsagayev), failure analysis (Wu), 
failure prediction (Chou), and interface crack analysis (Dunders and 
Comninou). 

Section III (Fracture Analysis) contains a variety of papers which 
include both analytical and experimental aspects. Fracture mechanics 
(Sih), interaction of cracks (Vanin), implication of experimental ob
servations (Smith), failure modes (Tarnopolskiy), finite-element 
analysis (Herrmann and Braun), multiple fracture (Kelly), polymer 
reinforcement (Knauss and Mueller), and fracture test results 

9 Professor of Engineering Science and Mechanics, Virginia Polytechnic 
Institute and State University, Blacksburg, Va. 24061. 
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(Wright, Welch, and JoUay), were described for a variety of polyphase 
materials. 

Section IV (Failure Analysis) includes papers which focus upon 
criteria for predicting strength, fracture and/or failure of composite 
materials. Specifically, studies on strength criteria (Annin and Baev), 
failure of thin-walled structures under flexure (Nemirovsky), opti
mum design and strength (Obraztsov and Vasil'ev), fracture models 
(Rikards, Teters, and Upitis), influence of failure peculariities on 
strength (Perov, Skudra, Mashinskaja, and Bulavs), free edge induced 
failure analysis (Crossman), bone fracture (Knets), and fatigue life 
prediction (Parfeyev, Oldirev, Tamuzs) are presented. 

Section V (Experimental Methods) contains papers on the ex
perimentally behaviors in composite materials and various techniques 
for observing and testing them. Included are nondestructive study 
of damage (Latishenko, Matiss), test method development (Chamis), 
the nature of crack growth (Bunsell), optical methods (Rowlands and 
Stone), effect of high modulus fibers (Kalnin), interesting mechanical 
behaviors (Chiao), fracture characteristics (Lachman), and fracture 
initiation prediction (Mast, et al.). 

The foregoing studies include both unidirectionally reinforced and 
crossply laminates and covered both common (glass-epoxy) and ad
vanced (graphite-aluminum, etc.) materials as well as some more 
exotic (asbestos cement, bone tissue) of the polyphase materials. 

Taken collectively, this volume presents a summary of current 
approaches and considerations involved in developing predictions 
of the failure by fracture and its associated mechanisms of a fairly wide 
variety of polyphase materials. Limitations and restrictions of the 
theories are noted and experimental methods are discussed and used 
to obtain results for comparison with analytical predictions. The 
volume should provide a window for viewing a "state of the art" in 
composite fracture (a developing but incomplete discipline) as seen 
collectively by the contributors. As such, it should be found of interest 
to workers in both composite materials and fracture mechanics. 

Three-Dimensional Problems of the Mathematical Theory of 
Elasticity and Thermoelasticity. By V. D. Kupradze, T. G. 
Gegelia, M. 0. Basheleishvili, and T. V. Burchuladze. Edited by 
V. D. Kupradze. North-Holland Publishing Co., New York. 1979. 
Pages 929. Price $158.50. 

REVIEWED BY E. STERNBERG1 0 

This voluminous tome is a translation into English of the 1976 
second edition of a monograph originally published by the Tbilisi 
University Press in 1968. Although the individual contributions of 
the four authors involved are not identified, it is safe to surmise that 
the work of Kupradze, who also served as editor of the book, was 
predominant in determining its scope and character. 

The present treatise is chiefly concerned with the classical linear
ized theory of homogeneous and isotropic elastic solids, elastostatic 
and elastodynamic considerations being given more or less equal at
tention. Further, a substantial amount of space is devoted to a lin
earized version of couple-stress theory for perfectly elastic, centro-
symmetric-isotropic materials, as well as to linear thermoelasticity 
theory. 

Notwithstanding its title, the book places relatively little emphasis 
on the treatment of specific physically important problems. Instead, 
the authors are heavily preoccupied with uniqueness and existence 
issues, and spend a major part part of their effort on the character
ization of the relevant problem classes in terms of singular integral 
equations. Some background for this approach is supplied in pre-

10 Professor of Mechanics, California Institute of Technology, Division of 
Engineering and Applied Science, Pasadena, Calif. 91125. 

liminary chapters on basic singular solutions of the governing field 
equations, on the theory of singular integral equations, and on per
tinent aspects of potential theory. Special mention should also be 
made of the three closing chapters, which pertain to contact problems 
for elastic media with inclusions, the use of generalized Fourier series, 
as well as to certain series and quadrature representations of solutions 
to half-space and quarter-space problems. 

As ought to be apparent from the preceding all too cursory de
scription, this is a rather unconventional treatise on elasticity theory, 
the choice of topics covered reflecting strongly the taste and bias of 
its authors. In particular, some readers—including the reviewer—may 
question whether couple-stress theory merits the emphasis it receives 
here. 

There is also cause to wonder whether the authors have consistently 
achieved "the modern level of mathematical rigor" avowed in their 
preface. Indeed, the mathematical erudition affected in these pages 
is not always matched by an equal measure of conceptual clarity or 
genuine mathematical care. 

A few examples drawn from the opening chapter on "Basic Con
cepts and Axiomatization" may serve to illustrate such misgivings. 
Here ordinary and couple-stresses are introduced (prior to any dis
cussion of kinematics) through limit-definitions that are not made 
mathematically meaningful. The repeated allusions to molecules or 
particles seem neither helpful nor appropriate in the context of a 
continuum-mechanical exposition. In view of the authors' casualness 
in distinguishing material from spatial coordinates, their transition 
to the linearized theory will not bear scrutiny. Nor is the reader aided 
by the admonition (on p. 17) not to confuse the "vector of rigid rota
tion" with the "vector of internal rotation," despite the use of two 
different symbols, since both are defined as one-half the displace
ment-curl (see pp. 9,16). 

No credit is given to the translator of this volume, and not much 
credit is due in this connection. Sentences such as "One may have an 
infinite number of directions at each point of a medium" (p. 5), are 
apt to be attributable to faulty translation. So is the puzzling assertion 
(p. 2): "If the body . . . is deformed, . . . the parts of the body are no 
longer in mechanical equilibrium." 

While this is hardly a treatise suitable for uninitiated students of 
elasticity theory, it renders accessible in English some valuable ma
terial of interest to specialists in this subject area. 

Theoretical Kinematics. By D. Bottema and B. Roth. North-Hol
land Publishing Company, Amsterdam, New York, Oxford. 1979. 
Pages 558 + XIV. Price $87.75. 

REVIEWED BY G. R. VELDKAMP11 

This is a textbook in which kinematics is presented as a theory in
dependent of any particular application, that is: as a fundamental 
science in its own right. The bulk of the book, 420 pages, is devoted 
to Euclidean kinematics of 3 and 2 dimensions. A characteristic fea
ture of the treatment is the principle of starting with general concepts 
and problems and then specializing gradually to more simple cases. 
The first 22 pages of the text are accordingly written in terms of n-
dimensional Euclidean space. The whole matter is in the main treated 
analytical accompanied by ample geometric interpretation. Synthetic 
reasoning however is not evaded in those places where it may con
tribute to a deeper understanding of the problem on hand. The 
mathematical tools are borrowed from elementary algebraic geometry, 
calculus, vector, and matrix algebra; mathematical concepts which 

11 Department of Mathematics, Technical University Eindhoven, Eindhoven, 
The Netherlands. 
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are not generally known to the average reader are moreover explained 
in the text. The Chapters III, IV, and V contain a coherent account 
of three-dimensional positions theory for 2, 3, 4, or more positions, 
respectively, and for both finitely separated and consecutive positions. 
In slightly over 100 pages classical results are derived in a new way 
and others are either new or appear for the first time in an English 
textbook. The next chapter is devoted to the study of continuous 
spatial kinematics. The properties of the instantaneous tangents, 
principal normals and binormals are carefully exposed. The same can 
be said with regard to the developables of moving planes and the ruled 
surfaces generated by lines of the moving space. Here once more one 
sees many new aspects, both in the way of presentation and in regard 
to the results. 

Chapter VII contains a neat survey of spherical kinematics, fol
lowing the scheme: finitely separated positions, consecutive posi
tions, and time-dependent motions. The next chapter deals with 
plane kinematics. It is a lucid self-contained treatise of about 90 pages, 
proceeding along the lines set by the scheme just mentioned. 

Chapter IX is about special motions. The authors analyze such 
spatial motions as the Frenet-Serret motion, Darboux's, Mannheim's, 
Schoenflies' and Krames' motion. From plane kinematics they select 
the four-bar motion, the special cases thereof and the cycloidal mo
tion. There follows a chapter on ^-parameter motions. It contains 
among other things an outstanding treatment of the second-order 
properties of the general 2-parameter spatial motion. There is a nice 
section on two-parameter plane motion. 

Chapter XI deals with a mapping of plane displacements on the 
points of a three-dimensional space, first introduced (1911) by . 
Grunwald and by Blaschke. The mapping is treated in an elementary 
way. One of the applications given by the authors is to the four-bar 
motion. They show, seemingly effortless, how to obtain a parametri-
zation of the coupler curve of a general four-bar by means of Jacobi 
elliptic functions. In addition it is shown how to parametricize the 
coupler curves of folding four-bars, these being, as is well-known, 
rational curves. 

Chapter XII is devoted to kinematics in other geometries. Although 
emphasis is laid on equiform kinematics, affine, elliptic and hyperbolic 
kinematics are not neglected. A chapter on special mathematical 
methods in kinematics concludes the text. 

An important feature of the book is the fact that the authors present 
some material without proof. This material is generally set in small 
print and denoted "Example." These examples are mainly formulated 
as exercises and must be regarded as an essential part of the text. 
There are somewhat over 800 examples. A careful student of the book 
will have no difficulty whatsoever in dealing with this material. There 
is an extensive bibliography up to 1977 of about 225 items and a re
liable index. There are few misprints and the book is well produced. 
The authors must have done a great deal of preliminary work, before 
they could sit down to compose this outstanding book which is in the 
opinion of this reviewer a highly valuable asset to kinematic literature. 
As such it should be in the library of each researcher and advanced 
student in the field of theoretical kinematics and the closely connected 

theory of mechanisms. The scholarly merits of the book are matched 
by its didactical quality. It has the style of a classic. 

Magnetohydrodynamic Flow in Ducts. By Herman Branover. John 
Wiley & Sons, Inc. (Halsted Press), New York. 1978. Pages xii-
290. 

REVIEWED BY J. S. WALKER12 

Anyone who deals with liquid-metal flows in the presence of mag
netic fields will find a wealth of invaluable information in this book 
which is not contained in any other book. This book is indispensable 
for both designers and basic researchers. The emphasis throughout 
the book is on the physical phenomena revealed by theoretical and 
experimental results, on comparison of all analytical and semiem-
pirical predictions with experimental data, and on practical quantities, 
such as friction factors and velocity distributions. Equations are 
presented with emphasis on the physics behind the important terms 
and without prolonged derivations. In covering theoretical studies, 
the author presents the important results with emphasis on when the 
phenomena revealed will occur in actual practical situations and 
without all of the details of the mathematics behind the results. The 
latest theoretical and experimental studies are discussed and inte
grated to give an excellent picture of where the leading edge of the 
field has reached to date and of what lies just beyond. One lengthy 
chapter presents many practical suggestions on experimentation with 
liquid metals in magnetic fields. The author draws this information 
from his own 20 years of experience and from personal contacts with 
other MHD experimentalists throughout the world. 

Over half of the book is devoted to three closely related topics: 
laminarization of turbulent flows by strong magnetic fields, semi-
empirical formulas for turbulent MHD flows and the special anistropy 
of turbulence in MHD flows. This is the first unified presentation of 
this information on turbulent MHD flows, while most of the results 
are taken from papers in Russian, with many of these papers in pro
ceedings which are not available outside of the U.S.S.R. This reflects 
the fact that the amount of research on MHD done in the U.S.S.R. 
during the past 15 years far exceeds that done in the U.S.A., and this 
book presents the results of much Soviet research in English for the 
first time. 

Researchers concerned with turbulence in ordinary hydrodynamic 
flows should also find this book interesting. With an electrically 
conducting fluid, a magnetic field can be used to manipulate the 
characteristics of the turbulence in order to study otherwise unat
tainable phenomena, such as two-dimensional turbulence. 

In summary, this book is a valuable contribution to the literature 
on turbulence and is the most important book on liquid-metal mag-
netohydrodynamics to appear since the basic textbooks published 
in the midsixties. 

12 Professor, Department of Theoretical and Applied Mechanics, University 
of Illinois, Urbana, 111. 61801. Mem. ASME. 

ERRATUM 
Erratum on "Some Observations on the Yoshimura Buckle Pattern 

for Thin-Walled Cylinders," Pages 377-380, and "Estimation of the 
Collapse Loads of Thin-Walled Cylinders in Axial Compression," pp. 
381-385, both by C. G. FOSTER, and both published in the June, 
1979, issue of the ASME J O U R N A L OF A P P L I E D M E C H A N I C S , Vol. 

46. 
In both these papers the word "melanex" appears describing the 

material used in making test cylinders. In fact the material was the 
I.C.I, product "Melinex." 
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